Generates Weibull distribution parameter estimates and confidence intervals. |
||
Syntax |
a, b, aCI, bCI = WeibullFit(Points) |
|
Arguments |
Name |
Description |
Points |
A vector of positive data points. |
|
Outputs |
Name |
Description |
a |
Estimate of the scale parameter. A scalar. |
|
b |
Estimate of the shape parameter. A scalar. |
|
aCI |
95% confidence interval of the estimate of a. A two-element row vector containing the lower and upper bounds of the confidence interval. |
|
bCI |
95% confidence interval of the estimate of b. A two-element row vector containing the lower and upper bounds of the confidence interval. |
|
Example 1 |
For a given data set, find a, b and the confidence intervals, assuming a Weibull distribution. |
|
Syntax |
||
a, b, aCI, bCI = WeibullFit([1.8669,1.3169,1.9167,1.6618]) |
||
Results |
||
a= 1.7888 |
||
b= 9.6421 |
||
aCI = 1.6084 1.9894 |
||
bCI = 4.1228 22.551 |
||
Comments |
The Weibull distribution does not have a standard parameterization. The form used here has the following PDF: f(x) = (b/a) * (x/a)^(b-1) * e^[-(x/a)^b] |
|
See Also: |