HyperWorks Solvers

CONGM

CONGM

Previous topic Next topic No expanding text in this topic  

CONGM

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Concentrated Mass Element

Description

CONGM defines a concentrated mass element at an NLFE grid.

Format

<CONGM

      id       = "integer"

      gid      = "integer"

      mass     = "real"

    [

      x        = "real"

      y        = "real"

      z        = "real"

    ]

      i11      = "real"

      i22      = "real"

      i33      = "real"

    [

      i21      = "real"

      i31      = "real"

      i32      = "real"

    ]

/>

Attributes

id

Unique identification number.

gid

Grid identification number.            

mass

First grid identification number.

x

y

z

X, Y and Z offset distance from the grid point to the center of gravity. Default for x, y and z is 0.

i11

i22

i33

Mass product of inertia about X, Y and Z axes respectively.

i21

i32

i33

Mass product of inertia about X-Y, X-Z and X-Y respectively. Default value for all three attributes is 0.

Comments

1.The x, y and z coordinates of the mass center of gravity are represented in the global coordinate system.
2.The form of the inertia matrix about its center of gravity is calculated as:

congm

 

where,

and,

3.All four grids defined for this element must be unique.

Example

The example demonstrates the definition of a CONGM element.

<CONGM id="1" gid="17" mass="10" i11="1" i22="1" i33="1"/>