HyperWorks Solvers

/THERM_STRESS/MAT

/THERM_STRESS/MAT

Previous topic Next topic Expand/collapse all hidden text  

/THERM_STRESS/MAT

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/THERM_STRESS/MAT - Thermal Material Expansion

Description

Used to add thermal expansion property for RADIOSS material (shell and solid).

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/THERM_STRESS/MAT/mat_ID

fct_IDT

Fscaley

 

 

 

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

fct_IDT

Function identifier for defining thermal linear expansion coefficient as a function of temperature.

(Integer)

 

Fscaley

Ordinate scale factor for thermal expansion coefficient function

Default = 1.0  (Real)

symbol_1K

hmtoggle_plus1Element Compatibility - Part 1

2D
Quad

8 node Brick

20 node Brick

4 node Tetra

10 node Tetra

8 node
Thick Shell

16 node
Thick Shell

check = yes

blank = no

hmtoggle_plus1Element Compatibility - Part 2

SHELL

TRUSS

BEAM

4-nodes shells: only for Belytshko-Tsai and QEPH elements

(Ishell =1, 2, 3, 4 and 24)
3-nodes shells: only for standard triangle
(Ish3n =1, 2)

 

 

check = yes

blank = no

hmtoggle_plus1Example (Thermal)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  1. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/PLAS_JOHNS/1

Steel (unit: Mg_mm_s)

#              RHO_I

              7.8E-9

#                  E                  NU

              210000                  .3

#                  a                   b                   n           EPS_p_max            SIG_max0

                 270                 450                  .6                   0                   0

#                  c           EPS_DOT_0       ICC   Fsmooth               F_cut               Chard

                   0                   0         0         0                   0                   0

#                  m              T_melt              rhoC_p                 T_r

                   0                   0                   0                   0

/HEAT/MAT/1

#                 T0             RHO0_CP                  AS                  BS     IFORM

                 273               3.588              1.9E-2                   0         1

# Blank card

 

/THERM_STRESS/MAT/1

#  fct_IDT            Fscale_y

      1003                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. FUNCTIONS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/1003

linear expansion coefficient function of temperature

#                  X                   Y

                 273              1.2E-5

                 800              1.2E-5

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#enddata

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.The /THERM_STRESS/MAT option should be used with thermal material. /HEAT/MAT should be defined for thermal analysis and temperature change computation.
2.For shells and solids, this option is available with all material laws.
3.This option is not available for implicit analysis.
4.The thermal expansion generates thermal strains which are defined as following:

symbol_a_14 is the isotropic thermal expansion coefficient

is the temperature gradient or temperature increment between current time and reference.

This change in temperature causes stress. The thermal stress is computed from Hook's law.

Where, H is the elasticity matrix.

To take thermal effect into account, this thermal stress is removed from total stress:

The total strain is considered as the sum of subsequently mechanical and thermal effect:

It is important to define boundary conditions with particular care for problems involving thermal loading to avoid over-constraining the thermal expansion. Constrained thermal expansion can cause significant stress, and it introduces strain energy that will result in an equivalent increase in the total energy of the model.

See Also:

Implicit Features and Compatibility Information