HyperWorks Solvers

/MAT/LAW84

/MAT/LAW84

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW84

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW84 - Swift and Voce Elastoplastic Law

Description

Swift-Voce elastoplastic law with Johnson-Cook strain rate hardening and temperature softening. This law allows modeling a quadratic non-associated flow rule.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW84/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

P12

P22

P33

Q

B

G12

G22

G33

K0

A

n

C

η

Cp

Tini

Tref

Tmelt

m

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

E

Young’s modulus

(Real)

Poisson’s ratio

(Real)

 

P12

Yield parameter

Default = -0.5  (Real)

 

P22

Yield parameter

Default = 1.0  (Real)

 

P33

Yield parameter

Default = 3.0   (Real)

 

G12

Flow rule parameter

Default = P12  (Real)

 

G22

Flow rule parameter

Default = P22  (Real)

 

G33

Flow rule parameter

Default = P33  (Real)

 

K0

Voce parameter

(Real)

 

Yield weighting coefficient

Default = 0.0  (Real)

 

Q

Voce hardening coefficient

(Real)

B

Voce plastic strain coefficient

Default = 0.0  (Real)

 

A

Swift hardening coefficient

(Real)

n

Swift hardening exponent

Default = 1.0 (Real)

 

Swift hardening parameter

Default = 0.00  (Real)

 

C

Strain rate coefficient

Default = 0.00  (Real)

= 0: no strain rate effect

 

Reference strain rate

Default = 1030 , no strain rate effect

(Real)

η

Taylor-Quinney coefficient quantifies the fraction of plastic work converted to heat

(Real)

 

Cp

Specific heat

(Real)

Tini

Initial temperature used in initialization when time=0

(Real)

Tref

Reference temperature

(Real)

Tmelt

Melting temperature

(Real)

m

Temperature exponent

(Real)

 

Strain rate optimization parameter for temperature dependency

(Real)

hmtoggle_plus1Example (Metal)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                 Mg                  mm                   s

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/LAW84/1/1

Swift-voce (metal)

#              RHO_I

                8E-9

#                  E                  NU

             206000.                0.30

#                P12                 P22                 P33               QVOCE               BVOCE

                -0.5                  1.                  3.            524.0000                 25.

#                G11                 G22                 G33                  K0               ALPHA

                -0.5                  1.                  3.                100.                 0.5

#                 AN                EPS0                  NN               CEPSP               DEPS0

               1000.             0.00128               0.200               0.014              0.0011

#                ETA                  CP                TINI                TREF               TMELT

                 0.9              420e+8                 293                293.               1700.

#              MTEMP              DEPSAD

               0.921               1.379

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.Yield stress is computed using an analytic expression with a combination of both Swift and Voce models, the strain rate dependency and temperature dependency following Johnson-Cook law.

2.The effective stress is computed as follows:

3.Temperature is updated using:

Where,

See Also:

Material Compatibility

Law Compatibility with Failure Model