HyperWorks Solvers

/MAT/LAW92

/MAT/LAW92

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW92

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW92 – Arruda-Boyce Hyperelastic Material

Description

This law describes the Arruda-Boyce material model, which can be used to model hyperelastic behavior. A stress vs strain curve can be defined as an input function in order to determine the material parameters by fitting this curve.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW92/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

Parameter input

D

 

 

Function input

Itype

fct_ID

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

Shear modulus

(Real)

D

Material parameter for bulk modulus computation

Default =1030 (Real)

 

The limit of stretch

Default = 7.0 (Real)

 

Itype

Test data type (stress strain curve)

Default = 1 (Integer)

= 1: Uniaxial data test

= 2: Equibiaxial data test

= 3: Planar data test

 

fct_ID

Function identifier defining engineer stress vs engineer strain

(Integer)

 

Poisson’s ratio

Default = 0.0 (Real)

 

hmtoggle_plus1Example (Rubber)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                 Mg                  mm                   s

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/LAW92/1/1

Generic RUBBER

#              RHO_I

            1.000E-9

#                 mu                   D                 LAM

          2.8000E+01           1.4000E-1               1000.

#    IType    fct_ID                  NU

 

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.The Arruda-Boyce energy density.

With

and

with

The Cauchy stress is computed as:

2.If fct_ID is not defined, which means choice parameter input, then keep the function input line (the fourth line) blank. If the fct_ID is defined, which means choice function input, then the input parameters , D and are ignored and are automatically identified by fitting of the provided stress vs strain curve.

For that the nonlinear least squares algorithm is used to fit the Arruda-Boyce parameters. Assume that the model is fully incompressible in fitting the Arruda-Boyce constants to the test data, except in the volumetric test.

The material constants are obtained using a least-squares-fit procedure, which minimizes the relative error in stress between the theoretical nominal stress and given experimental data, the relative error E is minimized.

where, is a stress value from the test data and is the theoretical nominal stress given by for each engineer strain i.

The nominal stress is computed for each mode assuming the full incompressibility:

Uniaxial Mode:

So

Equibiaxial Mode:

So

Planar (Shear Mode):

So

See Also:

New Keywords in V2017

Material Compatibility