Block Format Keyword
/MAT/LAW92 – Arruda-Boyce Hyperelastic Material
Description
This law describes the Arruda-Boyce material model, which can be used to model hyperelastic behavior. A stress vs strain curve can be defined as an input function in order to determine the material parameters by fitting this curve.
Format
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
/MAT/LAW92/mat_ID/unit_ID |
|||||||||
mat_title |
|||||||||
|
|
|
|
|
|
|
|
||
Parameter input |
|||||||||
D |
|
|
|||||||
Function input |
|||||||||
Itype |
fct_ID |
|
|
|
|
#RADIOSS STARTER #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /UNIT/1 unit for mat Mg mm s #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #- 2. MATERIALS: #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /MAT/LAW92/1/1 Generic RUBBER # RHO_I 1.000E-9 # mu D LAM 2.8000E+01 1.4000E-1 1000. # IType fct_ID NU
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #ENDDATA /END #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| |
With and with The Cauchy stress is computed as:
For that the nonlinear least squares algorithm is used to fit the Arruda-Boyce parameters. Assume that the model is fully incompressible in fitting the Arruda-Boyce constants to the test data, except in the volumetric test. The material constants are obtained using a least-squares-fit procedure, which minimizes the relative error in stress between the theoretical nominal stress and given experimental data, the relative error E is minimized. where, is a stress value from the test data and is the theoretical nominal stress given by for each engineer strain i. The nominal stress is computed for each mode assuming the full incompressibility: Uniaxial Mode: So Equibiaxial Mode: So Planar (Shear Mode): So |