Block Format Keyword
/MAT/LAW92 – Arruda-Boyce Hyperelastic Material
Description
This law describes the Arruda-Boyce material model, which can be used to model hyperelastic behavior. A stress vs strain curve can be defined as an input function in order to determine the material parameters by fitting this curve.
Format
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
/MAT/LAW92/mat_ID/unit_ID |
|||||||||
mat_title |
|||||||||
|
|
|
|
|
|
|
|
||
Parameter input |
|||||||||
D |
|
|
|||||||
Function input |
|||||||||
Itype |
fct_ID |
|
|
|
|
#RADIOSS STARTER #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /UNIT/1 unit for mat Mg mm s #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #- 2. MATERIALS: #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /MAT/LAW92/1/1 Generic RUBBER # RHO_I 1.000E-9 # mu D LAM 2.8000E+01 1.4000E-1 1000. # IType fct_ID NU
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #ENDDATA /END #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| |
With and with The Cauchy stress is computed as:
For that the nonlinear least squares algorithm is used to fit the Arruda-Boyce parameters. Assume that the model is fully incompressible in fitting the Arruda-Boyce constants to the test data, except in the volumetric test. The material constants are obtained using a least-squares-fit procedure, which minimizes the relative error in stress between the theoretical nominal stress and given experimental data, the relative error E is minimized. where, The nominal stress is computed for each mode assuming the full incompressibility: Uniaxial Mode: So Equibiaxial Mode: So Planar (Shear Mode): So |