HyperWorks Solvers

QUISPL

QUISPL

Previous topic Next topic No expanding text in this topic  

QUISPL

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Format

QUISPL(x, z, id) or QUISPL(x, 0, id, n)

Description

Returns the interpolated value or n-th derivative of the interpolated value of the Reference_Spline element.

Example

<Force_Scalar_TwoBody

  id             = "301001"

  type           = "Force"

  i_marker_id    = "10506"

  body1_id       = "105"

  j_marker_id    = "10706"

  body2_id       = "107"

  val_expression = "QUISPL(DM(10503,10703),0,301002)"

/>

<Reference_Spline

   id            = "301002"

   num_xy_pair   = "5"

   linear_extrap = "FALSE">

      0.0000000E+00  -2.2000000E+02

      2.0000000E+02  -2.2000000E+02

      2.3000000E+02  -2.2000000E+02

      3.7322400E+02  -1.1000000E+02

      5.0000000E+02  -0.1000000E+02

      5.1000000E+02  -1.2000000E+02

      6.0000000E+02  -1.3300000E+02

</Reference_Spline>

Arguments

x

The independent variable of the curve.

z

The independent variable z of the surface.  Use z = 0 if only one curve is being defined.

id

The ID of the Reference_Spline element.

n

The order of the derivative desired.  Not applicable with surfaces.  Must lie between 0 and 2.

Comments

1.QUISPL is based on a fifth order spline interpolation and produces smoother results compared to AKISPL and CUBSPL.
2.Algorithm details can be found in “Algorithm 507: Procedures for Quintic Natural Spline Interpolation”, John G. Herriot and Christian H. Reinsch, ACM Transactions on Mathematical Software, Vol 2, No 3, September 1976, Pages 281-289.

See Also:

Functions

Command Statements

Model Statements

Notation and Syntax