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1.0 ALE FORMULATION 
ALE or Arbitrary Lagrangian Eulerian formulation is used to model the interaction between fluids and solids; in 
particular, the fluid loading on structures. It can also be used to model fluid-like behavior, as seen in plastic 
deformation of materials.  

ALE derives its name from a combination of two different finite element modelling techniques.  

• Lagrangian Formulation - where the observer follows material points.  

• Eulerian Formulation - where the observer looks at fixed points in space.  

• Arbitrary Lagrangian Eulerian Formulation - where the observer follows moving points in space.  

1.1 Referential Domain  

At any location in space x and time t, there is one material point, identified by its space coordinates x at time t=0, 
and one grid point identified by its coordinates  at time t=0. Figure 1.1.1 provides a pictorial representation and 
defines the velocities in each formulation.  

Figure 1.1.1 ALE Formulation  

 
The derivative of any physical quantity can be computed either following the material point or following the grid 
point. They can then be related to each other.  

Given that F is a function f of space and time representing a physical property:  

The spatial domain is given by f(x,t).  

The material domain is given by f*(X,t).  

The mixed domain is given by f**( , t).  ξ
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Therefore:  

   EQ. 1.1.0.1 

Also:  

     EQ. 1.1.0.2 

This relates to acceleration by:  

     EQ. 1.1.0.3 

where ν  = material velocity  

w = grid velocity  

1.2 Conservation of Momentum  

Conservation of momentum, expressed in terms of a finite element formulation, is given by:  

     EQ. 1.2.0.4 

where IΦ
 = the weight functions  

ρ  = Material density  

ν  = Velocity  

σij = Stress Matrix  

bi = Body acceleration vector  

V = Volume  

This can be rewritten in a form similar to the explicit Lagrangian formulation with the addition of a new nodal 

force ftrm , accounting for transport of momentum:  

    EQ. 1.2.0.5 

where  

The transport of momentum force is calculated by:  

     EQ. 1.2.0.6 

where i,j = direction index  

I = connectivity  

Iη  = Upwind factor  
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 1.2.1 Momentum transport force  
Momentum transport forces are computed using the relation:  
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The upwinding technique is introduced to add numerical diffusion to the scheme, which otherwise is generally 
under diffuse and thus unstable.  
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10 ≤≤ η  Upwind coefficient, given in input.  

Full upwind 1=η  (default value) is generally used. 

Development of less diffusive flux calculation is currently under investigation.  

  

 

 

1.3 Conservation of Mass  

The finite element formulation of the Lagrangian form of the mass conservation equation is given by:  

      EQ. 1.3.0.2 

When transformed into the ALE formulation it gives:  

     EQ. 1.3.0.3 

Applying a Galerkin variation form for the solution of equation 1.3.0.3:  

    EQ. 1.3.0.4 

where  = Weighting function  
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Using a finite volume formulation:  

where   

ρ  = constant density over control volume V  

Therefore:  

      EQ. 1.3.0.5 

Using the divergence theorem leads to:  

      EQ. 1.3.0.6 

Further expansion gives:  

     EQ. 1.3.0.7 

This formula is still valid if density ρ  is not assumed uniform over volume V.  

The mass flux across a surface is shown in Figure 1.3.1.  

Figure 1.3.1 Mass Flux  

 
The density, ρi, is given computed:  
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where   is the upwind coefficient given on the input card.  

If , there is no upwind. Therefore:  

If , there is full upwind.  

The smaller the upwind factor, the faster the solution; however, the solution is more stable with a large upwind 
factor.  

For a free surface:  
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1.4 Conservation of Internal Energy  

Conservation of internal energy is used to model temperature dependent material behavior. It also allows an energy 
balance evaluation. However, internal energy is only calculated if it is turned on, to reduce computation time in 
problems not involving heat transfer.  

The conservation of energy is given by:  

���
�� � ���� � ��� ∙ ������ 	 ��! 	 "� �#$��$ � 0 EQ. 1.4.0.9 

Where,  e = Internal energy in Joules (Nm)  

P = Fluid pressure  

Applying a Galerkin variation form for the solution gives:  

& ψ������ � ���� � ��� ∙ ������ 	 ��! 	 "� �#$��$ ( � 0 EQ. 1.4.0.10 

Making the following assumptions:  

 

constant over control volume V  

Equation 1.4.0.10 reduces to:  
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Applying the divergence theorem gives:  
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Hence:  
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This formula is still valid if 〉 e is not assumed uniform over volume V.  

1.5 Rezoned Quantities  

The deviatoric stress tensor and the equivalent plastic strain must be rezoned and recalculated after every time 
step due to the ability of one element to contain a different amount of material.  

1.6 ALE Materials  

The following materials may be used with the ALE formulation.  

1=ψ
=eρ
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ALE Materials 
Law Number Description 

2 
Elasto-plastic 

/MAT/PLAS_JOHN 

3 
Elasto-plastic-Hydrodynamic 

/MAT/HYDPLA 

4 
Johnson Cook 

/MAT/HYD_JCOOK 

6 
Hydrodynamic Viscous 

/MAT/HYD_VISC 

10 and 21 
Rock Concrete Foam 

/MAT/LAW10 or /MAT/DPRAG 

22 and 23 
Elasto-plastic with Damage 

/MAT/DAMA or /MAT/LAW23 

20 
Bimaterial 

/MAT/BIMAT 

37 
Hydrodynamic - Bi-phase liquid gas 

/MAT/BIPHAS 

11 
Boundary - Stagnation conditions in flow calculations 

/MAT/BOUND 

16 
Gray model - Multiphase Gray E.O.S + Johnson's shear law 

/MAT/GRAY 

18 
Thermal conductivity, purely thermal material 

/MAT/THERM 

For the rest, refer to the next version of the theory manual. 

1.7 Numerical Integration  

The numerical integration techniques used are the same as those used for any other analysis type.  

The flow chart of calculations can be seen in Figure 1.7.1.  
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Figure 1.7.1 Flow Chart1  

 
1. Simplified Flow Chart 

 

1.8 Improved integration method 

This method can only be used with the CFD version of RADIOSS, and only available in Eulerian formulation. An 
eight Gauss point integration scheme is used to determine the shape functions. The shape functions are condensed 
to one point. This gives an eight point integration scheme with constant stress.  

1.9 Momentum Transport Force  

This scheme is only used with the ALE formulation (Arbitrary Lagrangian Eulerian) and in the CFD version of 
RADIOSS. The force is calculated using the relation:  

.     EQ. 1.9.0.14 

Where,  w = grid velocity  

ν  = material velocity  

V = element volume  

η  = upwind coefficient (user defined, default = 1 for full upwind)  
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When a Lagrangian formulation is used, the values of wj and vj are equal. Thus, EQ. 1.9.0.14 is equal to zero.  

1.9.1 UPWINDING TECHNIQUE 
An upwinding technique is introduced to add numerical diffusion to the scheme; otherwise it is generally under 
diffusive and thus unstable. The upwind coefficient used in EQ. 1.9.0.14 is calculated by:  

      EQ. 1.9.1.1 

Development of a less diffusive flux calculation is currently under investigation.  

       EQ. 1.9.1.2 

This option is activated with the flag INTEG (only in the CFD version).  

1.10 Stability  

The Courant condition (neglecting viscosity effects) is used to determine the stability of an ALE process. The 
maximum time step is calculated by:  

       EQ. 1.10.0.3 

Where, k = coefficient  

∆l = Smallest characteristic length of an element  

c = Material speed of sound  

ν  = Material velocity  

w = Grid velocity  

The speed of sound is determined by:  

       EQ. 1.10.0.4 

Where, ρ  = Density  

µ  = Dynamic viscosity  

p = Pressure  

The relative velocity between the material and grid motion (v-w) is computed by:  

      EQ. 1.10.0.5 

Where, N = Number of nodes of the considered element (usually N=8)  

1.11 ALE Kinematic Conditions  

1.11.1 Boundary Conditions  
Boundaries with Lagrangian materials are declared automatically Lagrangian.  

Nodes can be declared Lagrangian.  
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Constraints can be applied separately or simultaneously on: 

• Material velocity  

• Grid velocity  

These constraints can be applied in one or several directions of a skew reference frame. 

When the flag is set to 1, boundary condition is activated with global reference frame or skew reference frame.  
  

 
 

i = d.o.f with respect to global reference frame or skew reference frame 

VELOCITY: Vi = 0 

ACCELERATION:   i = 0 

The boundary conditions can be changed during Engine runs with /BCS or /BCSR Engine options. 

1.11.2 ALE Links  
An ALE link is identical to a rigid link. The slave node sets' grid velocity can be controlled by two master nodes, 
M1 and M2.  

There are three options to choose from:  

Option 0: 

Velocity is linearly interpolated with respect to order of input.  

     EQ. 1.11.2.1 

Option 1: 

Velocity is set to maximum absolute velocity of master nodes.  

 
   if    EQ. 1.11.2.2 
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Option 2: 

Velocity is set to minimum absolute velocity of master nodes.  

   if      EQ. 1.11.2.3 

The input data is specified at each restart run.  

1.12 Automatic Grid Computation 

There are three different grid velocity formulations that can be used in an ALE simulation. New keywords define 
the type of method used. The different formulations are:  

• 0 - J. Donea Grid Formulation: use keyword /DONEA  

(NWALE =0 for version < 4.1) 

• 1 - Average Displacement Formulation: use keyword /DISP  

(NWALE =1 for version < 4.1) 

• 2 - Nonlinear Spring Formulation: use keyword /SPRING  

(NWALE =2 for version < 4.1) 

1.12.1 /DONEA - J. Donea Grid Formulation  
This formulation [8], [72] computes grid velocity using:  

  EQ. 1.12.1.1 

where,  

 

N = Number of nodes connected to node I  

= Distance between node I and node J  

= adimensional factors given in input  

Therefore, the grid displacement is given by:  

     EQ. 1.12.1.2 

1.12.2 /DISP - Average Displacement Formulation  
The average displacement formulation calculates average velocity to determine average displacement.  
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      EQ. 1.12.2.1 

1.12.3 /SPRING - Nonlinear Spring Formulation  
Each grid node is connected to neighboring grid nodes through a non-linear viscous spring, similar to that shown 
in Figure 1.12.1.  
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Figure 1.12.1 Spring Force Graph  

 
The input parameters required are:  

= typical time step (Must be greater than the time step of the current run.)  

= Nonlinearity factor  

=  Damping coefficient  

v= Shear factor (stiffness ratio between diagonal springs and springs along connectivities)  

This formulation is the best of the three, but it is the most computationally expensive.  

1.13 Type 1 interface - Fluid-Structure Interaction  
Type 1 interface is used to model fluid-structure interactions, as shown in Figure 1.13.1 

Figure 1.13.1 Fluid-Structure Interaction 

 
This interface allows Lagrangian elements (structure) to interact with ALE (Arbitrary Lagrangian Eulerian) 
elements, which model a viscous fluid. Full slip conditions are applied at the boundary between the two domains.  

The acceleration of the Lagrange node is computed by:  

       EQ. 1.13.0.1 
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The acceleration of the ALE node is computed by:  

        EQ. 1.13.0.2 

The grid velocity of the ALE node is equal to the material velocity of the Lagrange node:  

        EQ. 1.13.0.3 

The normal material velocities of Lagrange and ALE nodes are equal. Therefore:  

       EQ. 1.13.0.4 

 

1.14 ALE Rigid Wall  

An ALE rigid wall has similar properties to other types of rigid walls. There are two different types:  

1. Shaped Charged: use keyword /DFS/WALL_SHAP 

2. Penetration: use keyword /DFS/WALL_PEN 

For further explanation of each rigid wall, contact Altair Development France.  

Impacting nodes can either have a sliding contact or be tied to the rigid surface contact point. The wall can also be 
moving.  

An example of an object impacting an ALE rigid wall can be seen in Figure 1.14.1.  

Figure 1.14.1 ALE Rigid Wall Impact  

 
A gap is required for the wall, Figure 1.14.1. When a slave node distance to the rigid wall is within the gap:  

• Nodes are forced onto the rigid wall and set as Lagrangian.  

• Zero volume elements are emptied into neighboring elements and deleted.  

In addition to the information explained above, an ALE rigid wall definition requires the number of nodes 
impacting simultaneously to be defined, along with the order of slave node impact.  
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1.15 Example  

A typical application of the ALE method is using high velocity impacts. Below, a cylinder, moving at 227 m/s, 
impacts with a rigid wall. The material is copper, with a yield stress of 400 MPa. The initial diameter is 6.4 mm 
and initial length is 32.4 mm. The simulation was performed using two different methods: ALE and standard 
Lagrangian. The results can be seen in Figure 1.15.1.  

Figure 1.15.1 Cylinder Impact Deformation  

 
It can be seen that the cylinder mesh using ALE remains regular, unlike the Lagrange method, where large element 
deformation creates very small and skewed elements. This reduces the time step, leading to more time step cycles. 
However, each ALE cycle takes longer than a Lagrangian.  

 


