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Chapter

ARBITRARY LAGRANGIAN
EULERIAN FORMULATION
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1.0ALE FORMULATION

ALE or Arbitrary Lagrangian Eulerian formulation ised to model the interaction between fluids aidis; in
particular, the fluid loading on structures. It calso be used to model fluid-like behavior, as seeplastic
deformation of materials.

ALE derives its name from a combination of two éi#nt finite element modelling techniques.
e Lagrangian Formulation - where the observer follomagerial points.
¢ Eulerian Formulation - where the observer lookixad points in space.

» Arbitrary Lagrangian Eulerian Formulation - whehe observer follows moving points in space.

1.1 Referential Domain

At any location in space x and time t, there is oraerial point, identified by its space coordisateat time t=0,
and one grid point identified by its coordinatéat time t=0. Figure 1.1.1 provides a pictorialres@ntation and
defines the velocities in each formulation.

Figure1.1.1 ALE Formulation

material domain spatial domain

D

referential domain (i.e. grid)

x=OX,0) = ®(E,t) Jacobians # 0
LAG  ALE.

material velocity: v = 8u(X,t)/8t| <

grid velocity: w= /Su(i,t)/atl ) v

The derivative of any physical quantity can be caoteg either following the material point or follavg the grid
point. They can then be related to each other.

Given that F is a function f of space and time espnting a physical property:
The spatial domain is given by f(x,t).
The material domain is given by f*(Xt).

The mixed domain is given by 4 , t).
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Therefore:

off, _of  _of dx, _of of (x,t)
B T okt i Tark bt

J J

| EQ.1.1.0.1

Also:

of °

s of (x,t)
ot

T |
ox,

T ot

|5 +(Vi _W')

J EQ.1.1.0.2

This relates to acceleration by:

y:ﬂ| :2\7| +(V.—W.)i\7| EQ.1.1.0.3
dt'™ ot ¢V gy N

whereV = material velocity

w = grid velocity

1.2 Conservation of Momentum

Conservation of momentum, expressed in terms wiite element formulation, is given by:

00,
jcb, pﬂ——”—pb, dv =0 EQ. 1.2.0.4
v ot 0x

where P the weight functions
L = Material density
V = Velocity
ojj = Stress Matrix
bi = Body acceleration vector
V = Volume

This can be rewritten in a form similar to the égiplLagrangian formulation with the addition ofnr@w nodal
force frm, accounting for transport of momentum:

M %V:{F M}_{Fint}+{Fb0d}+{F hgr}+{|:”m} EQ. 1.2.0.5

Where{F”m} =y f™m
The transport of momentum force is calculated by:

B =) oo, (w -y, )% dv EQ.1.2.0.6
J |

]
where i,j = direction index
| = connectivity

n, = Upwind factor
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1.2.1 Momentum transport force

Momentum transport forces are computed using tlatioa:

Fim = (L+7,)o®, (w, -v, )S%V EQ.1.2.1.1

J

The upwinding technique is introduced to add nueoariliffusion to the scheme, which otherwise isegatly
under diffuse and thus unstable.

. | 0D
n, =/75|gn{§_' (vj - W, )} EQ.1.2.1.2

0 <17 £1 Upwind coefficient, given in input.
Full upwind /7 =1 (default value) is generally used.

Development of less diffusive flux calculation isgrently under investigation.

fullupwind  mnp

1.3 Conservation of Mass

The finite element formulation of the Lagrangiamficof the mass conservation equation is given by:

dp av
— |y =—(pIV)— EQ.1.3.0.2
When transformed into the ALE formulation it gives:
ap PP 0V,
—|, = (W -V +p—, =0 EQ.1.3.0.3
Applying a Galerkin variation form for the solutiafiequation 1.3.0.3:
ap o 0V
—| = (w -V, +p—| |=0 EQ. 1.3.0.4
Jof 210121 |+ o5 o

where{// = Weighting function
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Using a finite volume formulation:
where { =1
O = constant density over control volume V

Therefore:

0p ov,
LZdv+|p—Ldv =0 EQ. 1.3.0.5
;[ ot \J,.paxK Q

Using the divergence theorem leads to:

J‘Z_ft’ av +j,0(Vj mj)dS: 0 EQ. 1.3.0.6
\ S

Further expansion gives:

%dev =£P(W,- -v, )nde EQ. 1.3.0.7

mass flux
This formula is still valid if density0 is not assumed uniform over volume V.
The mass flux across a surface is shown in Figtgd 1

Figure 1.3.1 Mass Flux

/

P p,'d,),' Py

¢; = [ (v; —w;).n; dS;

The densityg, is given computed:
pi = 2p{1+n sign(¢n)} +p,{1 — 1 sign(,)} EQ.1.3.08

where0</77 <1 is the upwind coefficient given on the input card.

+
If 7 =0, thereis no upwind. Thereforgd, = M

2
If 7 =1, there is full upwind.

The smaller the upwind factor, the faster the sohjthowever, the solution is more stable with @éaupwind
factor.

For a free surfacep; = 0,
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1.4 Conservation of Internal Energy

Conservation of internal energy is used to modapterature dependent material behavior. It alsewsllan energy
balance evaluation. However, internal energy iy calculated if it is turned on, to reduce compotatime in
problems not involving heat transfer.

The conservation of energy is given by:

dpe _ <(Wi —v)- ‘W) + (pe + P)Z% =0 EQ.1.4.0.9
K

at ax;
Where, e = Internal energy in Joules (Nm)

P = Fluid pressure

Applying a Galerkin variation form for the solutigiives:

J, W ("ait - <(wi —v) %) + (pe + P) Z—’é) =0 EQ.1.4.0.10
Making the following assumptions:
Y=1
€ = constant over control volume V
Equation 1.4.0.10 reduces to:

f, %dV + 1, (pe + P)ZxLidV =0 EQ. 1.4.0.11
Applying the divergence theorem gives:

J, 2Z2av + f; (pe(v; -n;)ds) + , PZxL’;dV =0 EQ. 1.4.0.12
Hence:

21, pedv = [ pe(w; = v)mds — [, PTEdy EQ. 1.4.0.13

This formula is still valid if) eis not assumed uniform over volume V.

1.5 Rezoned Quantities

The deviatoric stress tensor and the equivalent plastic strain must be rezoned and cetatkd after every time
step due to the ability of one element to contadliff@rent amount of material.

1.6 ALE Materials

The following materials may be used with the ALEnfoilation.
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ALE Materials

Law Number Description

2

10 and 21

22 and 23

20

37

11

16

18

Elasto-plastic
/MAT/PLAS_JOHN

Elasto-plastic-Hydrodynamic
/MAT/HYDPLA

Johnson Cook
/IMAT/HYD_JCOOK

Hydrodynamic Viscous
/MAT/HYD_VISC

Rock Concrete Foam
IMAT/LAW10 or /IMAT/DPRAG

Elasto-plastic with Damage
/MAT/DAMA or IMAT/LAW23

Bimaterial

IMAT/BIMAT

Hydrodynamic - Bi-phase liquid gas
/MAT/BIPHAS

Boundary - Stagnation conditions in flow calculaso
/MAT/BOUND

Gray model - Multiphase Gray E.O.S + Johnson'srdaes
IMAT/GRAY

Thermal conductivity, purely thermal material
/MAT/THERM

For the rest, refer to the next version of the tiepanual.

1.7 Numerical Integration

The numerical integration techniques used aredaheesas those used for any other analysis type.

The flow chart of calculations can be seen in Fegli7.1.
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Figure 1.7.1 Flow Chart

»  t=t+dt

element loop

-

diffusive fluxes(T,k,e)
convective fluxes (mass, energy,k,e)
rezoning (deviatoric stress, plastic strain)

element loop

gl

total volume variation => pressure
deviatoric strain rate => deviatoric stress
internal forces

momentum transport forces
anti-hourglass forces

nodal forcgvarray assembly
i i

o m

Y

kinematic conditions

i

velocity update

grid velocity

Y

1

1. Smplified Flow Chart

1.8 Improved integration method

This method can only be used with the CFD versfdRADIOSS, and only available in Eulerian formudati An
eight Gauss point integration scheme is used &raiéhe the shape functions. The shape functions@rdensed
to one point. This gives an eight point integratscheme with constant stress.

1.9 Momentum Transport Force

This scheme is only used with the ALE formulatidul{itrary Lagrangian Eulerian) and in the CFD versbf
RADIOSS. The force is calculated using the relation

ov,
mE! = (1+7,) 00, (wj -V, EARVE EQ.1.9.0.14
X,
Where, w = grid velocity
V = material velocity
V = element volume

] = upwind coefficient (user defined, default = 1 figll upwind)
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When a Lagrangian formulation is used, the valdesg andy; are equal. Thus, EQ. 1.9.0.14 is equal to zero.

1.9.1 UPWINDING TECHNIQUE

An upwinding technique is introduced to add nurardiffusion to the scheme; otherwise it is gergrahder
diffusive and thus unstable. The upwind coefficies¢d in EQ. 1.9.0.14 is calculated by:

_ | 0D, ( 3 )
n, =nsign v v, — W, EQ.19.1.1
j
Development of a less diffusive flux calculatiorcigrently under investigation.
0P
F'=o,|—tadv EQ.19.1.2
70X,

This option is activated with the flag INTEG (orifythe CFD version).

1.10 Stability

The Courant condition (neglecting viscosity eff¢éssused to determine the stability of an ALE @mes The
maximum time step is calculated by:

Al
At<K—— EQ. 1.10.0.3
C+v—-Ww

Where k = coefficient
Al = Smallest characteristic length of an element
¢ = Material speed of sound
V = Material velocity
w = Grid velocity

The speed of sound is determined by:

c= 16_,0 +ﬂ£ EQ.1.10.04
\pop 3p

Where, 0 = Density
M = Dynamic viscosity
p = Pressure

The relative velocity between the material and gntion (v-w) is computed by:

V_W:\/%ii("i' ~w' f EQ.1.10.0.5

Where,N = Number of nodes of the considered element (lyshiz8)

1.11 AL E Kinematic Conditions

1.11.1 Boundary Conditions

Boundaries with Lagrangian materials are declatgdraatically Lagrangian.
Nodes can be declared Lagrangian.
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Constraints can be applied separately or simultasigmn:
» Material velocity
e Grid velocity
These constraints can be applied in one or sederdtions of a skew reference frame.

When the flag is set to 1, boundary condition isvated with global reference frame or skew refessframe.

1 2 3 4 5 6 7 8 9 10

NODNUM |TRA/ROT |GRID LAG |NSKEW

LSkew system number (default global)

W, =V, grid velocity = material velocity
E Wy=Vy
X VZ

X

fixed grid velocity

=

0
0
0

z

. = 0 fixed rotational velocity (shells, beams,...)

translational velocity

i = d.o.f with respect to global reference framekew reference frame

VELOCITY: Vi=0

ACCELERATION: IT i=0

The boundary conditions can be changed during Engins with /BCS or /BCSR Engine options.

1.11.2 ALE Links

An ALE link is identical to a rigid link. The slaveode sets' grid velocity can be controlled by master nodes,
M1 and M2.

There are three options to choose from:
Option O:
Velocity is linearly interpolated with respect taler of input.

|
Wi =Wy + Wy, _WMlZ)m EQ.1.11.2.1

Option 1

Velocity is set to maximum absolute velocity of tessiodes.

W, =W, if W] > Wy, | EQ.1.11.2.2
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Option 2:

Velocity is set to minimum absolute velocity of tersnodes.

W, =W, if Mol <M EQ.1.11.2.3

The input data is specified at each restart run.

1.12 Automatic Grid Computation

There are three different grid velocity formulasiainat can be used in an ALE simulation. New keysatefine
the type of method used. The different formulatiares

e 0-J. Donea Grid Formulation: use keyword /DONEA
(NWALE =0 for version < 4.1)

e 1 - Average Displacement Formulation: use keywoi&P
(NWALE =1 for version < 4.1)

e 2 - Nonlinear Spring Formulation: use keyword /SR&I
(NWALE =2 for version < 4.1)

1.12.1 /DONEA - J. Donea Grid Formulation

This formulation [8], [72] computes grid velocitging:

1 1 a u,(t)-u, (t)
WI(t+At/2)=—> W,(t-At/2)+—=—>» L,(t)y =14 .1.12.1.
I( +At/ ) Ng J( / )+ NzAt; |J()§ Llj(t) EQ.1.12.1.1

W
where,1-y'< " <l+y

N = Number of nodes connected to node |
L,, = Distance between node | and node J
a, y = adimensional factors given in input
Therefore, the grid displacement is given by:

u(t +At) = u(t)+ w(t + At /2)at EQ.1.12.1.2

1.12.2 /DI SP - Aver age Displacement For mulation

The average displacement formulation calculatesageevelocity to determine average displacement.

u(t +At) = %ij (t) EQ.1.12.2.1
J

1.12.3/SPRING - Nonlinear Spring Formulation

Each grid node is connected to neighboring gridesatirough a non-linear viscous spring, similathad shown
in Figure 1.12.1.
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Figure 1.12.1 Spring Force Graph

‘ Normalised

Force

-l

dl

The input parameters required are:

AT, = typical time step (Must be greater than the tinep sif the current run.)
0< y <1= Nonlinearity factor
1] = Damping coefficient

v= Shear factor (stiffness ratio between diagonahgriand springs along connectivities)

This formulation is the best of the three, busithie most computationally expensive.

1.13 Type 1linterface - Fluid-Structure I nteraction

Type 1 interface is used to model fluid-structureiactions, as shown in Figure 1.13.1

Figure 1.13.1 Fluid-Structure Interaction

Ale Node a ?[

This interface allows Lagrangian elements (strtup interact with ALE (Arbitrary Lagrangian Euin)
elements, which model a viscous fluid. Full slimditions are applied at the boundary between tleed@mains.
The acceleration of the Lagrange node is compuyed b

—_a EQ. 1.13.0.1
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The acceleration of the ALE node is computed by:

. _F
Vo=— EQ. 1.13.0.2
m,
The grid velocity of the ALE node is equal to thaterial velocity of the Lagrange node:
W, =V, EQ.1.13.0.3
The normal material velocities of Lagrange and Aldéles are equal. Therefore:
v, [n=vy [n EQ. 1.13.0.4

a

1.14 ALE Rigid Wall

An ALE rigid wall has similar properties to othgpes of rigid walls. There are two different types:
1. Shaped Charged: use keyword /DFS/WALL_SHAP

2. Penetration: use keyword /DFS/WALL_PEN

For further explanation of each rigid wall, contAttair Development France.

Impacting nodes can either have a sliding contabedied to the rigid surface contact point. Thelwan also be
moving.

An example of an object impacting an ALE rigid wedin be seen in Figure 1.14.1.
Figure 1.14.1 ALE Rigid Wall Impact

gap for
node & element
absorption

I N
AN NN

lines of.points . . )
1mpactlgg t]le rigid wall silmutanecously

A gap is required for the wall, Figure 1.14.1. Wizeslave node distance to the rigid wall is witthia gap:
* Nodes are forced onto the rigid wall and set agédragjan.
» Zero volume elements are emptied into neighborlaments and deleted.

In addition to the information explained above, AE rigid wall definition requires the number of des
impacting simultaneously to be defined, along wlith order of slave node impact.
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1.15 Example
A typical application of the ALE method is usingyhivelocity impacts. Below, a cylinder, moving &72m/s,

impacts with a rigid wall. The material is coppeith a yield stress of 400 MPa. The initial diameg6.4 mm
and initial length is 32.4 mm. The simulation wasfprmed using two different methods: ALE and stadd

Lagrangian. The results can be seen in Figure1..15.
Figure 1.15.1 Cylinder Impact Deformation

V=227 m/s
ALE CALCULATION
3292 CYCLES

1T
H TTTOTTIT

I
TR

RN
ﬂ\\\*\\"ﬁ‘

T
i
1

AN

W

LAGRANGE CALCULATION
13636 CYCLES

It can be seen that the cylinder mesh using ALEaiaeregular, unlike the Lagrange method, whegelaiement
deformation creates very small and skewed elem&hts.reduces the time step, leading to more titee sycles.

However, each ALE cycle takes longer than a Lageang
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