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2.0 BASIC EQUATIONS

The continuum mechanics summarized here is bas&etn[35], [36] and [37]. Three basic choices neele
made in the development of a large deformation shsoretization scheme:

» the mesh description,
< the kinematic description, i.e. how the deformai®measured,
e the kinetic description, i.e. how the stresses@easured.

Usually, the kinematic description implies the kioedescription as kinetic and kinematic measutresukl be
energetically conjugated.

To go further in to the theory, two sets of cooed@s are introduced:
» the spatial or Eulerian coordinates,

< the material or Lagrangian coordinates.

2.1 Material and Spatial Coordinates

In a Cartesian coordinates system, the coordirgtesmaterial point in a reference or initial cgnufiation are
denoted by X. The coordinates of the same poititérdeformed or final configuration are denotedby

The motion or deformation of a body can thus becdesd by a function¢(X,t) where the material
coordinatesX and the timé are considered as independent variables:

x=¢(X,t) EQ.2.1.0.1
The function@ gives the spatial positions of material pointg&dsnction of time.
The displacement of a material point is the diffieeebetween its original and final positions:
u(X,t)=g(X,t)- X EQ.2.1.0.2

It is possible to consider displacements and, aorsequence final coordinates as functions of initial
coordinatesX. The initial configuration is assumed to be petfeknown and each coordinad¢ identifies a
specific material point. For this reason, the &iidoordinates are called the material coordinates.

On the other hand, the final coordinakeisientify a point of space which can be occupiedilfferent material
points according to the different analyzed confagians. For these reasons, ks called spatial coordinates.

In solid mechanics, material coordinates are uguallled Lagrangian coordinates. In their genegdinition,
they are given by the values of the integrationstamts of the differential equations of particlgjectories. A
particular definition consists in using the coosatasX of the particle in the initial configuration. Thmint of
view corresponds to the definition of material ainates in solid mechanics.

Use of material coordinates is well suited for datiechanics as we seek to analyze the evolutian s#t of
points for which we search the final configuratiand properties. Integration can be performed inititéal
configuration for which geometric properties arealk/ simple.

In fluid mechanics however, the engineer is moterésted in the evolution of a situation in a regiefined by
fixed boundaries in space. Boundaries are evegtgatissed by fluid particles. It is the spatial figuration
which is important while the set of particles magryw This is the reason why fluid mechanics is lgua
developed using spatial or Eulerian coordinates.

In solid mechanics, the Eulerian formulation cotssis considering displacements and initial cocatis as
function of spatial coordinates A problem for using Eulerian coordinates in sslidechanics is the difficulty
of formulating constitutive equations, such as tékationship between stresses and strains thatata@ninto
account change of orientation. For this reasordsokechanics are principally developed using therdagjan
point of view.

The reason for using the Lagrangian form for sakdsrimarily due to the need for accurate bounaaogleling.
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2.2 M esh Description

In Lagrangian meshes, mesh points remain coincident with material ppiahd the elements deform with the
material. Since element accuracy and time stepadegwith element distortion, the magnitude of deifation
that can be simulated with Lagrangian meshes igdin

In Eulerian meshes, the coordinates of the element nodes are fixats Means that the nodes remain coincident
with spatial points. Since elements are not chanmedhe deformation of the material, no degradation
accuracy occurs because of material deformatiornth®mther hand, in Eulerian meshes, boundary nddest
always remain coincident with the boundaries of dieenain. Boundary conditions must be applied ahtsoi
which are not nodes. This leads to severe compitain multi-dimensional problems.

A third type of mesh is aArbitrary Lagrangian Eulerian mesh (ALE). In this case, nodes are programmed to
move arbitrarily. Usually, nodes on the boundaaiessmoved to remain on boundaries. Interior nodesreved
to minimize element distortion.

The selection of an appropriate mesh descriptionether a Lagrangian, Eulerian or ALE mesh is very
important, especially in the solution of the lamgformation problems encountered in process siioulair
fluid-structure interaction.

A by-product of the choice of mesh description lie testablishment of the independent variables. &or
Lagrangian mesh, the independent variabl®.i&\t a quadrature point used to evaluate the ialefarces, the
coordinateX remains invariant regardless of the deformationthef structure. Therefore, the stress has to be
defined as a function of the material coordinétd his is natural in a solid since the stress path-dependent
material depends on the history observed by a mafmint. On the other hand, for an Eulerian mekh,stress
will be treated as a function &f which means that the history of the point wiledeio be convected throughout
the computation.

2.3 Vicinity Transfor mation

Central to the computation of stresses and stiaitise Jacobian matrix which relates the initiadl aleformed
configuration:

dx :%dxj =D,xdX, =F,dX, EQ.2.3.0.1
o

_ 0 EQ. 2.3.0.2

o .2.3.0.

The transformation is fully described by the eletseni the Jacobian matrk

F”- = Djxi EQ. 2.3.0.3
So that EQ. 2.3.0.1 can be written in matrix notati

dx = FdX EQ. 2.3.0.4

The Jacobian, or determinant of the Jacobian mateasures the relation between the initial volui§® and
the volume in the initial configuration containitige same points:

dQ =|F|dQ° EQ.23.05
Physically, the value of the Jacobian cannot tdle Zero value without cancelling the volume of & afe
material points. So the Jacobian must not becongative whatever the final configuration. This prage

insures the existence and uniqueness of the intenssformation:

dX = Fdx EQ. 2.3.0.6
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At a regular point whereby definition of the fieli:(X) is differentiable, the vicinity transformation defined
by:

F, =D;x =D;(X +u(X,t) =4, +Du EQ. 2.3.0.7
or in matrix form:

F=1+A EQ.2.3.0.8

So, the Jacobian matrixcan be obtained from the matrix of gradients opldisements:

A=Du EQ. 2.3.0.9

2.4 Kinematic Description

For geometrically non-linear problems, i.e. probdeim which rigid body rotations and deformation kEnege, a
large number of measures of deformation are passibl most theoretical work and computer softwangley
the following three measures:

» the velocity strain (or rate of deformation)

_ 1(6\4 v, J
D, ==| -+ EQ. 2.4.0.1
2( 0x; 0x%

» the Green strain tensor (Lagrangian strain temsegsured with respect to initial configuration

Poo2(0X; oX; 0X;0X, o

» the Almansi strain tensor (Eulerian strain tensogpsured with respect to deformed configuration

EA, =1 ou , 0u; _duy du, EQ. 2.4.0.3
2{0x; 0x 0% 0X

All three measures of strains can be related th etiter and can be used with any type of mesh.

2.4.1 Velocity strain or rate of deformation

The strain rate is derived from the spatial velodierivative:

. _Ug 1( av, . 0v,
& =—=Dij == —t+— EQ.24.1.1
dt 2( 0x; 0%
or in matrix form:
£= D:%(L+LT) EQ.2.4.1.2
where:
= % EQ.2.4.1.3
i OXJ- .2.4.1.

is the velocity gradient in the current configuoati
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The velocity of a material particle is:

15)%

v =%

ot

where the partial differentiation with respect itme t means the rate of change of the spatial positiof a
given particle. The velocity difference between tpasticles in the current configuration is given by

dv, :%dxj =L, dx, = L, FdX, EQ.2.4.15

J

EQ.2.4.1.4

In matrix form:
dv = Ldx = LFdX EQ.2.4.1.6

On the other hand, it is possible to write the godifference directly as:

d

dv:a(FdX): FdX EQ.2.4.1.7
where:

. _oF

F=— EQ.2.4.1.8

ot

One has as a result:

L=FF* EQ.2.4.1.9
Now, L is composed of a rate of deformation and a ratetation or spin:

L=D+Q EQ.2.4.1.10

Since these are rate quantities, the spin candagett as a vector. It is thus possible to decomhads¢o a
symmetric strain rate matrix and an anti symmemiation rate matrix just as in the small motioedty the
infinitesimal displacement gradient is decompos#d an infinitesimal strain and an infinitesimataton. The
symmetric part of the decomposition is the strabe ior the rate of deformation and is:

S:D:%(F‘F‘%F‘Tlﬁ) EQ.2.4.1.11
The anti symmetric part of the decomposition isghe matrix:
Q:%(F'F‘l—F‘TFT) EQ.2.4.1.12

The velocity-strain measures the current rate dbrdeation, but it gives no information about thetato
deformation of the continuum. In general, EQ. 2M1is not integral analytically; except in the diniensional
case, where one obtains the true strain:

e=1In(l/L) EQ.2.4.1.13

| andL are respectively the dimensions in the deformediaitidl configurations. Furthermore, the integial
time for a material point does not yield a wellidefl, path-independent tensor so that informatibaut
phenomena such as total stretching is not availablan algorithm that employs only the strain véipc
Therefore, to obtain a measure of total deformatiloa strain velocity has to be transformed to sother strain
rate.

The volumetric strain is calculated from densitgr Bne dimensional deformation:

_P _,_—KQ_-d
U=+ - " T EQ.2.4.1.14
o
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2.4.2 Green strain tensor

The square of the distance which separates twdsinirthe final configuration is given in matrixrfo by:

dx"dx = dX"FTFdX EQ.2.4.2.1
Subtracting the square or the initial distance haee:
dx"dx—dX"dX =dX " (FTF -1)dX =2EdX"dX EQ. 2.4.2.2
E:E(FTFT —I) EQ.2.4.23
2

C=F'F and B =FF" are called respectively right and left Cauchy-@remsor.
Using EQ. 2.3.0.8:

E= % (A+ AT+ A"A) EQ. 2.4.2.4
-0y,
E, =7 N+ 2004 O O EQ.2.4.2.5
2(0x, ax, X, oX,

In the unidimensional case, the value of the sisin
E=(2-12)/(21?) EQ. 2.4.2.6
wherel andL are respectively the dimensions in the deformediwitidl configurations.

It can be shown that any motiéhcan always be represented as a pure rigid bodsiaotéollowed by a pure
stretch of three orthogonal directions:

F=RU=R(+H) EQ.24.2.7
with the rotation matriR satisfying the orthogonality condition:

RTR=1 EQ.2.4.2.8
andH symmetric.

The polar decomposition theorem is important beeatsill enable to distinguish the straining paftthe
motion from the rigid body rotation.

One has from EQS. 2.4.2.3 and 2.4.2.7:

H? 1
E=H = FTF_| .2.4.2.
+—2 2( ) EQ. 2.4.2.9
R:F(| +H)_1 EQ. 2.4.2.10

EQ. 2.4.2.9 allows the computationtdf and EQ. 2.4.2.10. .

As the decomposition of the Jacobian maffiexists and is unique is a new measure of strain which is
sometimes called the Jaumann strain. Jaumann séulires the calculation of principal directions.

If rotations are small,

R=1+Q EQ.2.4.2.11
RR=(1+Q) (1 +Q) EQ.2.4.2.12
Q"+Q=0 EQ.2.4.2.13

if second order terms are neglected.
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As a result, one has for the Jacobian matrix:

F=1+A=(1+Q)I +H) EQ.2.4.2.14
leading, if the second order terms are neglectethe classical linear relationships:
A=Q+H EQ.2.4.2.15
H :%(AT + A) EQ. 2.4.2.16
1 T
Q=2 (a- A7) EQ.24.217

So for EQ. 2.4.2.15 and EQ. 2.4.2.16, when rigidybtations are large, the linear strain tensaobees non-
zero even in the absence of deformation.

The preceding developments show that the lineaimsineasure is appropriate if rotations can beautedl; that
means if they are of the same magnitude as thiesiaad if these are of the order of?1dr less. It is also worth
noticing that linear strains can be used for maedydarge strains of the order of 1@rovided that the rotations
are small. On the other hand, for slender strusturtgich are quite in extensible, non-linear kindosamust be
used even when the rotations are order of i€cause, if we are interested in strains of 2.0, using linear
strain the error due to the rotations would be tgrethan the error due to the strains.

Large deformation problems in which non-linear kiragics is necessary, are those in which rigid bradgtion
and deformation are large.

2.5 Kinetic Description

The virtual power principle in Section 2.10 willagt equilibrium in terms of Cauchy true stresses te
conjugate virtual strain rate, the rate of defoiomatlt is worth noticing that, from the enginegut@nt of view,
the Cauchy true stress is probably the only meastigractical interest because it is a direct measi the
traction being carried per unit area of any inteswwface in the body under study. This is the oeawhy
RADIOSS reports the stress as the Cauchy stregssdt¢ond Piola-Kirchhoff stress is, however, inticet here
because it is frequently mentioned in standardteo#s.

The relationship between the Piola-Kirchhoff strasd the Cauchy stress is obtained as followstiSgairom
the definition of Green's strain (EQ. 2.4.2.3),

1

E:E(FTF -1) EQ.250.1
the strain rate is given by:

1 .

E:E(FTF+FTF) EQ. 2.5.0.2
The power per unit reference volume is:

P=ES EQ. 2.5.0.3
whereSrepresents the tensor of second Piola-Kirchhoffssies. On the other hand for Cauchy stresses:

P = éolF| EQ.25.0.4

(FTF+FTF)s=(FF*+FTET )olF| EQ.25.0.5

One has immediately:

FSF' = ofF| EQ.25.0.6
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Second Piola-Kirchhoff stresses have a simple physinterpretation. They correspond to a decomjuosiof
forces in the frame coordinate systems convectetidoyleformation of the body. However, the stresasure is
still performed with respect to the initial surface

2.6 Stress Rates

In practice, the true stress (or Cauchy stressgaiigrtime interval will be computed using the sireste in an
explicit time integration:

o,(t+a)=0,(t)+0,a EQ.26.0.1

U'ij is not simply the time derivative of the Cauchsess tensor as Cauchy stress components are asdocia

with spatial directions in the current configurati&o, the derivatives will be nonzero in the cafsa pure rigid
body rotation, even if from the constitutive poaitview the material is unchanged. The stressisasefunction
of element average rigid body rotation and of straie.

For this reason, it is necessary to sepac'a}einto two parts; one related to the rigid body raotiand the

remainder associated with the rate form of thesstetrain law. Objective stress rate is used, meathiat the
stress tensor follows the rigid body rotation &f thaterial [14].

A stress law will be objective if it is independeuit the space frame. To each definition of thedrigody
rotation, corresponds a definition of the objectiess rate. The Jaumann objective stress tepsortive will
be associated with the rigid body rotation defime#Q. 2.4.1.11:
0% =0, =0 EQ. 2.6.0.2

where:

o'ij is the Jaumann objective stress tensor derivative,

0'ij is the stress rate due to the rigid body rotativakocity.
The correction for stress rotation is given by:

' =0, Qy +0,Q, EQ. 2.6.0.3

and ij defined in EQ. 2.4.1.11 (see Section 5.1.10.1).

2.7 Stresses in Solids

2.7.1 Principal stresses

Since the stress tensor is symmetric, we can alfags proper orthogonal matrix, i.e. a coordinsystem that
diagonalizes it:

o 0 O
R'oOR=|0 o, O EQ.2.7.1.1
0 0 g

The diagonal components are called the principasses and allow a 3D representation of the sfateass at a
point.

2.7.2 Stressinvariants

Many of the constitutive models in RADIOSS are fafated in terms of invariants of the stress tensbe most
important are the first and second invariants:
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p=-——X W "z EQ.2.7.2.1

G = ot 0P (o, +pF +l, + pF 2205 +20% 420%)  E0 2722

called pressure and von Mises stress after RiclardMlises.
The values of these functions remain invariant utidasformation by a proper orthogonal matrix.
If,

0=R'0,R,
then:
P=0

Uvm = avmo

2.7.3 Invariant space

It is useful to plot the state of stress as a pai@t diagram of pressure and von Mises stress:

uniaxial stress states
Pure shear /
stress state
\ 3
X

Pure hydostatic stress stalt
4 P

»

"

The horizontal axis corresponds to the hydrostatiding, the vertical axes to pure shear. The Wwith tangent
1/3 is uniaxial compression. The line with tangdr8 is uniaxial tension.

2.7.4 Deviatoric stresses

The pressure or first invariant is related to tharge in volume of the solid. The deviation froryalrostatic
state of stress is linked to the change in shape.stress deviator is defined as:

S=o0+pl

The second invariant becomes, in terms of the tlenga

vm

3
o) :JE@%+§W+§E+%%A2§W+%%) EQ.27.4.1

A surface of constant von Mises stress in deviatepace or principal deviatoric space is a sphieret(ess
space it is a cylinder).
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2.8 Updated, Total Lagrangian and Cor otational
For mulations

Finite element discretizations with Lagrangian nessare commonly classified as either an updatedabagan
formulation or a total Lagrangian formulation. Bdtimulations use a Lagrangian description. Thaamsethat
the dependent variables are functions of the natéragrangian) coordinates and time. In the gedosly

nonlinear structural analysis the configurationtled structure must be tracked in time. This tragkimocess
necessary involves a kinematic description wittpees to a reference state. Three choices callegefRatic
descriptions” have been extensively used:

Total Lagrangian description (TL): The FEM equations are formulated with respect tfixed reference
configuration which is not changed throughout thalgsis. The initial configuration is often usedit in special
cases the reference could be an artificial baségroation.

Updated Lagrangian description (UL): The reference is the last known (accepted) soluttda kept fixed over
a step and updated at the end of each step.

Corotational description (CR): The FEM equations of each element are referréddcsystems. A fixed or base
configuration is used as in TL to compute the rigadly motion of the element. Then the deformedenurstate
is referred to the corotated configuration obtaibgdhe rigid body motion of the initial reference.

The updated Lagrangian and corotational formulatiame the approaches used in RADIOSS. These two

approaches are schematically presented in Fig8r#.2.

Figure 2.8.1 Updated Lagrangian and Corotational descriptions

U |_ Current configuration C o+l
Zn
2 > I
X0 yn+1
Initial undeformed configuration®C Following configuration "+

Zn

CR

Current
ZO N
D >
XO

Corotational configuration (CR)

Initial undefarmed configuration ©
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By default, RADIOSS uses a large strain, large ldigment formulation with explicit time integratiofhe
large displacement formulation is obtained by cotimguthe derivative of the shape functions at eaatie. The
large strain formulation is derived from the incesttal strain computation. Hence, stress and stai@grue
stresses and true strains.

In the updated Lagrangian formulation, the Lagrangioordinates are considered instantaneously ideinic
with the Eulerian spatiad coordinates. This leads to the following simplificas:

- OX;

6% - a_l =g EQ.2.8.0.1
o
]

dQ =dQ, EQ. 2.8.0.2

The derivatives are with respect to the spatialdian) coordinates. The weak form involves intégaver the
deformed or current configuration. In the total taaggian formulation, the weak form involves intdgraver the
initial (reference) configuration and derivatives gaken with respect to the material coordinates.

The corotational kinematic description is the meostent of the formulations in geometrically nonéne
structural analysis. It decouples small strain mi@tenonlinearities from geometric nonlinearitiesdahandles
naturally the question of frame indifference ofsatiopic behavior due to fabrication or materiahlireearities.

Several important works outline the various versiohCR formulation [7], [50], [51], [52], and [53]

Some new generation of RADIOSS elements are baséti®approach. Refer to the “Element Libraryapter
for more details.

REMARK:

A similar approach to CR description using conveateordinates is used in some branches of fluidhaeics
and theology. However, the CR description maintarthogonality of the moving frames. This will allo
achieving an exact decomposition of rigid body mtand deformational modes. On the other hand,exiad
coordinates form a curvilinear system that fits thange of metric as the body deforms. The diffegeends to
disappear as the mesh becomes finer. Howevernergecase the CR approach is more convenientuntstal
mechanics.

2.9 Equations of Equilibrium

Let Q be a volume occupied by a part of the body indheent configuration, anfl the boundary of the

body. In the Lagrangian formulatiof) is the volume of space occupied by the materiahatcurrent time,
which is different from the Eulerian approach whese examine a volume of space through which theerizt
passesI is the traction surface oh andb are the body forces.

Force equilibrium for the volume is then:
ov,
[rdr+[phda=[p=tdo EQ.2.9.0.1
r Q Q ot

with O the material density.
The Cauchy true stress matrix at a poinf ofis defined by:
I, =no; EQ. 2.9.0.2

Where,nis the outward normal tb at that point. Using this definition, EQ. 2.9.06sMritten:

[noydr +[ podo :jp%dQ EQ.2.9.0.3
r Q Q
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Gauss' theorem allows the rewrite of the surfateginal as a volume integral so that:

60”.

[nioydr=[—"do EQ.2.9.0.4

oX.
r Q Y7

As the volume is arbitrary, the expression can fyeli@d at any point in the body providing the diéf®tial

equation of translation equilibrium:

p ov,
—L+ b =p— EQ.2.9.0.5
0X; m=p ot ©

Use of Gauss' theorem with this equation leadshéo result that the true Cauchy stress matrix mest b
symmetric:

o=0" EQ. 2.9.0.6

so that at each point there are only six independemponents of stress. As a result, moment edquitib
equations are automatically satisfied, thus ondytthnslational equations of equilibrium need te@besidered.

2.10 Principle of Virtual Power

The basis for the development of a displacemeitefelement model is the introduction of some Iychhsed
spatial approximation to parts of the solution. Tingt step to develop such an approximation isefglace the
equilibrium equations by an equivalent weak fortisTis obtained by multiplying the local differeaitequation
by an arbitrary vector valued test function defimgth suitable continuity over the entire volumelantegrating
over the current configuration:

Q

00
jd/(ax + b - ,ov,} dQ =0 EQ.2.10.0.1
J

The first term in EQ. 2.10.0.1 is then expanded:

j(a/ aa"JdQ j{ J( )in)—Maji:ldQ EQ. 2.100.2

5 0X; 0x;

Using Gauss's theorem gives:

[[ i) o=l br 021003

Q

taking into account that stresses vanish on thepament of the traction boundaries.
Replacing EQ. 2.10.0.3 in EQ. 2.10.0.2 gives:

60“ )
IE:2 dQ = f Jr.dr - I 0,dQ EQ.2.10.0.4
Q 0X j X;
If this last equation is then substituted in EQL020.1, one obtains:
j o) o,dQ - jd/ pb.dQ - j Jr.dr + jd/ M dQ =0 EQ. 2.10.0.5
5 axJ

The preceding expression is the weak form for theilérium equations, traction boundary conditicensd
interior continuity conditions. It is known as thanciple of virtual power.
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2.11 Physical Names of Virtual Power Terms

It is possible to give a physical name to eacthefterms in the virtual power equation. This wél dsseful in the
development of finite element equations. The nddedes in the finite element equations will be itiéed
according to the same physical names.

The first term can be successively written:
o(ov,)
0X.

]

Jji =(d_”- i :(d:)ii + W, )Uji =0 EQ.211.0.1

One has used the decomposition of the velocityigrad into its symmetric and skew symmetric parts arad th

Mg, =0 since AW is skew symmetric andr;; is symmetric.

The latter relation suggests thrﬂf)ijaji can be interpreted as the rate of internal virwadk or virtual internal

power per unit volume. The total internal powd@™ is defined by the integral ofD;0;:

P =[D,0,dQ = jMa“dQ =[d,0,dQ EQ.2.11.0.2
X
Q Q | Q
The second and third terms in EQ. 2.10.0.5 areitheal external power:
P = [&,o0dQ + [ (0% )rdr EQ.2.11.0.3
Q T,

The last term is the virtual inertial power:
inert — y
P = [ & p4,dQ EQ.2.11.0.4
Inserting EQS 2.11.0.2, 2.11.0.3 and 2.11.0.4H®o 2.11.0.5, the principle of virtual power canviriiten as:
P =P - P + P EQ.2.11.0.5
for all dv; admissible.

We can show that virtual power principle impliesoag equations of equilibrium. So it is possibleuse the
virtual power principle with a suitable test furtias a statement of equilibrium.

The virtual power principle has a simple physicdkipretation. The rate of work done by the extefoces

subjected to any virtual velocity field is equalthe rate of work done by the equilibrating stresse the rate of
deformation of the same virtual velocity field. Tpenciple is the weak form of the equilibrium etjoas and is
used as the basic equilibrium statement for thitefielement formulation. Its advantage in this rega that it

can be stated in the form of an integral over thleme of the body. It is possible to introduce apgmations by
choosing test functions for the virtual velocitglfi whose variation is restricted to a few nodales.

2.12 Small Strain For mulation

RADIOSS uses two different methods to calculatesstrand strain. The method used depends on theotype
simulation. The two types are:

e Large strain
e Small strain

The large strain formulation has been discussedréefnd is used by default. Small strain analysiseist used
when the deformation is known to be small, for egkanlinear elastic problems.

Large strain is better suited to non-linear, elplsistic behavior where large deformation is knowrotcur.
However, large mesh deformation and distortion cesate problems with the time step. If an elemeant i
deformed excessively, the time step will decreaseniuch, increasing the CPU time. If the elemeathes a
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negative volume, the computation will stop or themeent will have to be removed. Using small stre@m
eliminate these problems.

Using a small strain formulation for part of a kardeformation process introduces of course erfidrsse errors
depend on the specific case, but they can provlukttar solution than element deletion.

On the other side, materials like honeycomb, whigtve no Poisson's effect, can have the small strain
limitations corrected by using adjusted stressitstarves.

A small strain, small displacement formulation ¢hos be specified for some specific material bedravike
honeycomb, or can be implemented when the timesiipa large strain formulation reaches a minimeatue
that is defined by the user. This allows the corapom to proceed at an acceptable rate.

The small displacement formulation is, however,nesbmmended for some simulations, e.g. crash sisaly

2.12.1 Small strain option

Assuming a constant Jacobian matrix during timealsd a constant volume, previous equations degtnato
a small strain and small displacement formulatilhspatial variables are then values definedmett=0 (or at
the time the small strain formulation is initiated)

Time step then becomes constant:

o

At = EQ.2.12.1.1 (a)

o |

and the effective negative volume has no effeadhercomputation (only the initial volume is used).

The Jacobian matrix time transformation is depehdpon element deformation and element rigid badgtion
(EQ. 2.4.2.7 and EQ. 2.4.2.8). On the other hagd] body translation has no effect on the Jacobiairix.

A small strain formulation is achieved if the elathéeformation is not taken into account. Likewiaesmall
displacement formulation is obtained if the elenégit body rotation is ignored.

From a practical point of view, small strain formatibn will be obtained if, instead of recomputimg tJacobian
matrix at each cycle, the initial matrix is updateking into account element rigid body rotation:

Flt+a)=F(t)o EQ. 2.12.1.1 (b)
whereQ is the rigid body angular velocity.

An alternative solution that accounts for elemégidrbody rotation consists in computing the intdrforces in
a local reference frame attached to the elemerns 3tlution is used for shell elements and convketiigck
elements.

Unlike the large strain formulation, the small stréormulation uses values based on the initialfigomation.
This is either at the beginning of the simulatiorabthe beginning of the small strain implemewiati

Hence, the strain rate is calculated using:

_( 0o,

ij v A
0x;

3 EQ.2.12.1.2

t=0
with @, the interpolating shape functions avgl the components of velocity at node
The strain in an arbitranydirection is calculated by:
. Adx ) _ AX
£, =Y &t :Z(— =— EQ.2.12.1.3
Xo Xo

Thus, the strain is the engineering strain.

The stress is calculated using the strain ratetbednaterial law provided by the user. The lateinisgrated
over the element volume to produce the internaldarector, which is summed over the elements taiokibe
overall force vector:
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i 0
fi" =0, 9| 4o EQ.2.12.1.4
5 | 0%
t=0
The stress is the engineering stress.

The volumetric strain using the small strain foratidn is independent of density. For one dimengiona
deformation, one has:

/,1=—(‘sxx+$yy +£ZZ)=—|£ EQ.2.12.1.5

0

The small strain formulation for solid elements wieveloped for specific material, like honeycon.tthe
crushing direction, honeycomb has no Poisson'stedfied stress integration over the initial surfascacceptable.
The effect on strain is small during elastic defation and can be corrected in the plastic phasediyy a
modified engineering stress-engineering strain risteurve.

For materials like crushable foam, with a smallsBon's ratio, this formulation can be applied sssftdly in
certain situations. However, for other materidigs formulation has to be used very carefully.

Shell elements have fewer limitations than soliehednts. For crash applications, the main shellrdeition is
bending. The small strain formulation has no effectthe bending description if membrane deformatsn
small.

The small strain formulation can be applied to s@teenents for which the time step is reaching & sigecified
value.

If the critical time step is small, compared to ihiéial one, this formulation gives acceptableulesand is more
accurate than removing the deformed elements.

2.12.2 Large strain option

By default RADIOSS uses a large strain large digpeent formulation with explicit time integratioBy
computing the derivative of shape functions at eactte, large displacement formulation is obtainEde large
strain formulation results from incremental strea@mputation. Stresses and strains are therefagestrasses and
true strains.

The spatial derivatives of isoparametric brick shpctions are given by:
0P 40P
L — F(t) 1 I

—1 EQ.2.12.2.1
ax,. or

WhereF(t) is the Jacobian matrix.

For each element the internal forces are integraved the volume with one integration point:

Q aXl t=0 axl
Time integration of Cauchy stress (true stress):
do; (t
ot+d)=0, (Q’“#()dt EQ.2.12.2.3

uses objective stress rate, meaning that the seessr follows the rigid body rotation of the mi&k Stress
rate is a function of element average rigid bodwgtion and of strain rate. Strain rate is obtaifrech spatial
velocity derivative:

dé‘ij _ 1| oy, avj
+

—1+— EQ.2.12.2.4
dt 2| 0x; 0x
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where:
ov, _ 09,
—_— = EQ.2.12.25
ox;  OXv,
Stability of explicit scheme is given by the Couraandition:
I
At <— EQ.2.12.2.6

C
with | the element characteristic length anithe sound speed.
The time step is computed at each cycle.

Large element deformation can give a large timp dexrease. For overly large deformations a negailume
can be reached and it then becomes impossiblevéotithe Jacobian matrix and to integrate the séegsver the
volume.

2.12.3 Stress and strain definition

With large strain formulation, stresses are truesses and strains are true strains:

€= AAI/I Elnl— EQ.2.12.3.1
0
F
o= < EQ.2.12.3.2
With small strain formulation stresses become esgying stresses and strains engineering strains:
_ Al
=Y DA/, =T EQ.2.12.3.3
0
F
g=— EQ.2.12.34
S

The definition of volumic strain is also modifieBor large strain RADIOSS uses a volumic strain coteg
from density:

,L/Z(——ljZ—Z— EQ.2.12.35
For small strain we have:

( A
/,1:—£X+£y+sz)=—|— EQ.2.12.3.6
0
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