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4.0 DYNAMIC ANALYSIS

The discrete form of the equation of motion givenSection 3.5 represents a system of linear difteak
equations of second order and, in principal theti&mi to the equations can be obtained by stanplarckedures
for the solution of differential equations with abant coefficients. However, in practical finitemlent analysis,
a few effective methods are used. The proceduregg@nerally divided into two methods of solutioiredt

integration method and mode superposition. Althotinghtwo techniques may at first look to be quiféedent,

in fact they are closely related, and the choiceofee method or the other is determined only byr themerical

effectiveness.

In direct integration the equations of motion are directly integratech@i® numerical step-by-step procedure. In
this method no transformation of the equations iatmther basis is carried out. The dynamic equilibr
equation written at discrete time points includbee effect of inertia and damping forces. The varatof
displacements, velocities and accelerations isnasduvith each time intervalt . As the solution is obtained
by a step-by-step procedure, the diverse systenlineanities as geometric, material, contact andydar
deformation nonlinearity are taken into accountaimatural way even if the resolution in each stpains
linear.

The mode superposition method generally consists of transforming the ldzriim equation into theeneralized
displacement modes. An eigen value problem is resolved. Thereigectors are the free vibration mode shapes
of the finite element assemblage. The superposiifothe response of each eigen vector leads talibizal
response. As the method is based on the superposiile, the linear response of dynamically loadédhe
structure is generally developed.

In the following, first the resolution procedure direct integration method when using an expliaihet
discretization scheme is described. Then, the pliwes of modal analysis are briefly presented. ifgicit
method will be detailed in Chapter 12.

4.1 Direct Integration Method via Explicit Scheme

In transient dynamic analysis, the direct integmratinethod is usually chosen. A few commonly uséegiration
methods exist in the literature [54]. The methoddusr RADIOSS is derived from Newmark time integrat
scheme.

This section deals with time integration of accafiens, velocities and displacements. The gendgalithm for
computing accelerations, velocities and displacemeés given. Stability and time step aspects amn th
discussed.

4.1.1 Newmark's Method

Newmark's method is a one step integration metfibe. state of the system at a given titpg =t + his
computed using Taylor's formula:

2 S
ft +h)= £t )+hi'(t, )+%f()( t)+ +h?f()(n)+Rs EQ. 4111
étj' (T, +h-r]°dr EQ.4.1.1.2

The preceding formula allows the computation opkiisements and velocities of the system at tie 1:

tn+1
Uy =0, + [U(r)dr EQ.4.1.1.3
t"
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to.
U, =u, +hu + J'l(tm ~r)i(r)dr EQ.41.1.4
tn

The approximation consists in computing the intisgfar acceleration in 4.1.1.3 and in 4.1.1.4 byneucal
quadrature:

tn+1

[u(z)dr = (L~ y)hd, + phii,,, +r, EQ.4.1.15

th
tha

J(tnﬂ ~7)i(r)dr = (% - ﬂjhzﬂn + B0, +r) EQ.4.1.1.6
tn

In replacing EQ. 4.1.1.3 and EQ. 4.1.1.4, one has:

Upyg =0, + (L= y)hti, + phdi, EQ.4.1.1.7
Uy =U, + hun + (% _ﬁjhzun + ;thunﬂ + rr: EQ.4.1.1.8

According to the values of and [3, different algorithms can be derived:

« y=0,6=0: pure explicit algorithm. It can be shown thasialways unstable. An integration
scheme is stable if a critical time step existghsd, for a value of the time step lower or eqoal t

this critical value, a finite perturbation at agivtime does not lead to a growing modification at
future time steps.

« y=1/2,=0: central difference algorithm. It can be showrt ihis conditionally stable.

« y=1/2,=1/2: Fox & Goodwin algorithm.

« y=1/2,F=1/6:linear acceleration.

« y=1/2, =1/4: mean acceleration. This integration scheme isitttanditionally stable
algorithm of maximum accuracy.

4.1.2 The Central Difference Algorithm

1
The central difference algorithm corresponds toNesvmark algorithm withy = E and =0 so that EQS.

4.1.1.7 and 4.1.1.8 become:

R | -
Uy = U, +E hn+1(un + l"n+1) EQ.4.1.2.1
—u Fhol SR, EQ.4.1.2.2
Un+1 = Uy n+1Un E n+1 " Un P
with h.,, the time step betweely andt,,,.

It is easy to show [38] that the central differemdgorithm can be changed to an equivalent fornh \Bitime
steps:
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. _U.,.—2u +u_
a, :W EQ. 4.1.2.3
if the time step is constant.

From the algorithmic point of view, it is, howevenpre efficient to use velocities at half of thmei step:

. ) 1
u,=ut ,|=—(u,.,-u,) EQ.4.1.2.4
n+= n+= h
2 2 n+l
so that:
.. 1 (. )
i,=——|u ,-u , EQ.4.1.25
h n+> n-=
n+1 2 2
h,=(h+h,)/2 EQ.4.1.2.6

Time integration isexplicit, in that if acceleratiorli, is known (see Section 4.3), the future velocitesl
displacements are calculated from past (known)egin time:

« U , isobtained from EQ. 4.1.2.5:
n+=
2

u ,=u ,+h U, EQ.4.1.2.7

1
n+= n-= n+=
2 2 2

The same formulation is used for rotational velesit

u_., is obtained from EQ. 4.1.2.4:

n+l

Upy =Uy Rl EQ.4.1.2.8

The accuracy of the scheme is ot order, i.e. if the time step is halved, the amafrerror in the calculation is
one quarter of the original. The time stepnay be variable from one cycle to another. It isafeulated after
internal forces have been computed.

4.1.3 Numerical Starting Procedure

At time t = 0, the displacement and velocityU, are known from initial conditions. The acceleratid, and

time s.tephl are found from solving the equations of motione Tititial time steph0 is set to zero:

hy=0; h& :% EQ.
2
4131
U, =U, EQ.4.1.3.2
2
u, =u,+h,u, EQ.4.1.3.3
2 2
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4.1.4 Algorithm Flow Chart

The flow chart of the central difference algoritltan be summarized as in Fig. 4.1.1. It is pointedtioat the
solution of the linear system to compute accelenatis immediate if the mass matrix is diagonal.
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4.1.5 Example: Dropping body

The question “how far can a body be dropped withoecarring damage?” is frequently asked in the paakg
manufacturing for transportation of particles. reblem is similar in landing of aircrafts. It che studied by
an analytical approach where the dropping bodyadeted by a simple mass-spring system (Figure J.IE.B

is the dropping heightn andk the mass of the body and the stiffness represgtttim contact between the body
and the ground, the equation of the motion carepeesented by a simple one d.o.f differential dqnads long
as the spring remains in contact with floor:

Figure 4.1.2Model for a dropping body

X =,/2gh

mX + kx = mg EQ.4.15.1

In this equation the damping effects are negledtedsimplify the solution. The general solution dfet
differential equation is written as:

x=ASnat+ B Cosat +C EQ.4.15.2

where the constants A, B and C are determineddjynitial conditions:
Att=0=>x=0, x=,/2gh , X=¢g EQ.4.15.3

/ k
G is the natural frequency of the systemw =, [—
m

Introducing these initial solutions into 4.1.5.8efollowing result are obtained:

2gh g
Snat +—= (1-Cosat EQ.4.1.5.4
w o ( ) Q

The same problem can be resolved by the numenicakdure explained in this chapter. Considerinfiy sttthe
following numerical values for the mass, the s&fg, the dropping height and the gravity:

X=

m=1, k=20 , h=1 , g=10 EQ.4.1.55

From EQ. 4.1.5.1, the dynamic equilibrium equatorequation of motion is obtained as:

X+20x=10 EQ.4.1.5.6

Using a step-by-step time discretization methodhaitentral difference algorithm, for a given knostep & the
unknown kinematic variables for the next step avergby EQ. 4.1.5.6, EQ. 4.1.2.4 and EQ. 4.1.2.5:
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X, =10-20x,
X = X AL+ X, EQ.4.15.7
Xy = XA+ X

For the first time step the initial conditions alefined by EQ. 4.1.5.3. Using a constant time gdp= 0.1 the
mass motion can be computed. It is compared taitadytical solution given by EQ. 4.1.5.4 in Figurd..3.
The difference between the two results shows the tiscretization error.

Figure 4.1.30btained results for the example 4.1.3
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4.1.6 Numerical Stability

The definition of numerically stability is similao the stability of mechanical systemsnumerical procedureis
stable if small perturbations of initial data result in small changes in the numerical solution. It is worthwhile to
comment the difference between physical stabilitg aumerical stability. Numerical instabilities sgifrom the
discretization of the governing equations of thstesy, whereas physical instabilities are instagdiin the
solutions of the governing equations independenhefnumerical discretization. Usually numericalbdity is
only examined for physically stable cases. For théson in the simulation of the physically unstginocesses,
it is not guaranteed to track accurately the nucagiinstabilities. Numerical stability of a phydigaunstable
process cannot be examined by the definition galeove. You establish the numerical stability cidteon the
physically stable system and suppose that anyestd@orithm for a stable system remains stableronrstable
system [36].

On the other hand, the numerical stability of timiegrators discussed in the literature concermeigdly linear
systems and extrapolated to nonlinear cases by iekamlinearized models of nonlinear systems. The
philosophy is the followingif a numerical method is unstable for a linear system, it will be certainly unstable

for nonlinear systems as linear cases are subsets of the nonlinear cases. Therefore, the stability of numerical
procedures for linear systems provides a usefudegta explore their behavior in a general nonlirezese.

To study the stability of the central differenaméi integration scheme, you establish the necessaditions to
ensure that the solution of equations is not ameplirtificially during the step-by-step procedustability also
means that the errors due to round-off in the cderpalo not grow in the integration. It is assuifethe time
step is small enough to accurately integrate thpaese in the highest frequency component.
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4.1.7 Stability of the explicit scheme
In direct integration method, at timiethe solutions for the prior steps are known andstbiation for the time
t,, =t, +At is required next. The equations to relate dispteoes, velocities and accelerations in a discrete

time scale using the central difference time irdéign algorithm are given in Section 4.1.2. Thewn ¢
rewritten as the following:

Un+1=Un +%(~un +Un+l)=un+5 +%Un+l

EQ.4.1.7.1
2 1
n+=

u™ =u" +Ata" +%.U" =u" +Atu 2

For stability studies, aim to establish a recursalationship to link the displacements at threesecutive time
steps:

[uun:‘l} ) [A][uu”:} 4 EQ.4.1.7.2

where [A] is called amplification matrix. A spectral analysdf this matrix highlights the stability of the
integration scheme:

The numerical algorithm is stable if and only if the radius spectral of [A] is less than unity. In the other words
when the module of all eigen values of [A] are smaller than unity the numerical stability is ensured.

The stability of a numerical scheme can be studidg the general form of the 2x2 mat[%\]:
A A
[A] :{ 1 12} EQ.4.1.7.3
A 21 A 22

Then, the equations are developed for the systathsowwithout damping [55].
The eigen values c{fA] are computed from the characteristic polynomialagign:

de{A - A1]=0 EQ.4.1.7.4

N -2AN+A, =0

where A :%tF[A] :%(A11+A22),
A = de{A] = AA, — AR

The eigen values are then obtained as:

Ao = AN -A EQ.4.1.75

If AZ <A,, eigen values are complex conjugateAif = A ,, they are real and identical; &2 > A ,, they
are real and distinct. You intend to define a ditgbilomain in the(Al,Az)-space, where the spectral radius
p([A]): ma><(|)\i (Al,A2)|)S1 . The boundary of this domain is given by coup(é\sl,Az) such as
p([A]) =1. Three cases are to be considered:
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1. Roots are real and one of them is equal to 1:

You then have:

1-2A,+A, =0 EQ.4.1.7.6
This yields:

A,=2A-1

A=l EQ.4.1.7.7

A, =A,

The corresponding part of the boundary of the Btgbdomain is the segment analytically defined by
1-2A;+A,=0and-1<A, <1

2. Roots are real and one of them is equal to -1 :

You then have:

1+2A,+A, =0 EQ.4.1.7.8
This yields:

A,=-2A,-1

A=-1 EQ.4.1.7.9

A, =-A,

In this case, the corresponding part of the boundarthe segment given b§+2A,+A, =0 and
-1<A,<1.

3. Roots are complex conjugate :
Their modulus is equal to 1. You then have, ushqg =gtlo .

O:e2ia _2Aieia +A2
= (cos2a - 2A cosa + A, ) +i(sin2a - 2A sina) EQ.4.1.7.10
= (2cosa(cosa - A )+ A, -1)+i(2sina(cosa - A))

This yields:
2cosalcosa —A )+ A, -1=0
_ ( A“) A EQ.4.1.7.11
2sina(cosa—A)=0
Since sina # 0, you obtain:
A, =cosa
EQ.4.1.7.12
A, =1

The corresponding part of the boundary is thus#wment given byA, =1 and-1< A, <1.

The 3 segments introduced above define a closemaorPointA, = A, =0 is located inside this contour and

in this casep([A]): 0. Since p([A]) varies continuously with respect tq And A, you can conclude that the
stability domain corresponds to the interior of ttentour. To precisely define the stability domajou must
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also have points leading to double eigen value oflufus 1, i.e. the intersections between the pémabo
Al2 = A, and the boundary of the domain. This correspoo(k)ints(Al, A2) = (i- 1,1).

Figure 4.1.4Stability domain

A

!

I
STABILITY

Complex conjugate
eigenvalues

Real
2
AL =A, eigenvalue

Double eigenvalue
/ 1-2A,+A, =0

1+2A,+A, =0

You can analytically summarize the descriptionhgf stability by means of the following two setsohditions:

@) GV PN GV N
2 2 EQ.4.1.7.13
1

(2) -1<A, <1, A,=

4.1.7.1 Numerical stability of undamped systems

The stability conditions developed in the previgastion can be applied to a one degree-of-freedaarsgstem
without damping. The dynamic equilibrium equatiotime t is given by:

mi" +ku" = f" EQ.4.1.7.14

wherem andk are respectively the nodal mass and stiffndss.is the external force at timg. Rewriting the
central difference time integration equations fié@. 4.1.7.1, you obtain:

1

1
U™ =u" +ALG 2 =ut + AL 2 + ARG
EQ.4.1.7.15

— .n
u"=u"t +Ata 2

and:

o un+l_2un +un—1
u = 7 EQ.4.1.7.16
At

01-Jan-2017 11
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Substituting these equations into EQ. 4.1.7.1yigitds:

un+l_2un +un—l
m A +ku"=f" EQ.4.1.7.17

This equation can be written as EQ. 4.1.7.2. Ttheramplification matrix takes the expression:

[A]:{z_ai2At _0} EQ.4.1.7.18

/ k
where W = ,[— is the angular frequency of the considered mode.
m

2 n$2
Comparing with EQ. 4.1.7.3, you havA, :1—% and A, =1. Stability is then given by:

W?At?

—1<1- <1 EQ.4.1.7.19

The right inequality is always true & #0. For, the particular case of =0, the scheme is unstable. However,
the analytical solution for a system with =0 leads to an unbounded solution. The left inetyatiplies:

2
At <— EQ.4.1.7.20

w

4.1.7.2 Numerical stability with viscous damping velocities at
time steps

The dynamic equilibrium equation at time steis written as:
mi" +cu" +ku" = f" EQ.4.1.7.21

Using the equations:

et
u™ =u" +Ata 2
EQ.4.1.7.22
nl
u"=u"t+Atu 2
Results in:
1 1
n+l n-1 _ L L
uT-u"T =Atlu ?2+u EQ.4.1.7.23

01-Jan-2017 12
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For the velocity, write the equations:
1

=02+ g

2 EQ.4.1.7.24
1

0"z =g+ By

2
to obtain:
1 -n_l -WJ 1 n+l n-1
u"=-lu 2+u 2 :—(u -u ) EQ.4.1.7.25
2 24t

Substituting these equations into EQ.4.1.7.21re¢karring continuation equation on the displaceneenitritten
in the form:

u™-2u"+u"™ [ .. ;
. 5 + (u” t-u” l)+ ku"=f" EQ.4.1.7.26
At 24t
The equation can be rearranged to obtain the esipresf the amplification matrix:
_ i g_
2- C(JzAtz 2m
CAt CAt
[Al=] 1+~ 1+~ EQ.4.1.7.27
2m 2m
— 1 O -
1- W A\t? cAt
o _ 2 __ om
This yields A = AL andA, = —CX,: :
1+— 1+ —
2m 2m

Stability is given by the set of conditions from BQ.7.13:

W At?

1 1, 1
- < < EQ.4.1.7.28
1+g 1+g 1+g

2m 2m 2m

1-‘;“

m
MIT<__ &1
== <t

1+ —
2m

The second expression is always verifieddor0. It is the same for the right inequality oé thirst expression.
The left inequality of the first expression leadghe condition on the time step:

N

At<— EQ.4.1.7.29
(V)
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You find the same condition as in the undamped,cake&eh echoes a conclusion given in [55]. You nyay
remark that damping has changed the strict inetyuiatio a large inequality, preventing from wealstability
due to a double eigen value of modulus unity.

It is important to note that the relation EQ.4.2%is obtained by using the expression EQ.4.1.to2Z%mpute

1 1
n+= n-=

nodal velocities at time steps. However, in an iekpicheme generally the mid-step velocitigls 2 andU 2
are used. This will be studied in the next section.

4.1.7.3 Numerical stability with viscous damping velocities at
mid-steps

Considering the case in which damping effects cabameglected, you still would like to deal witbcdupled
equilibrium equations to be able to use essentthlysame computational procedure. Except for ése of full

modal projection which is a very expensive techaigund practically unused, the damping maE@} is not
diagonal, contrary tc{M]. The computation of the viscous forces with theatxvelocity given by the

At
integration algorithm requires the matr[;M]+E[C] to be inverted, which can harm the numerical

performances. You therefore often compute the vsdorces using the velocities at the preceding-steg,
which are explicit. This leads to an equilibriunstgpn in the form:

1
n-t
mi"+cu 2+ku"=f" EQ.4.1.7.30
The integration algorithm immediately yields:

n-

u

N

:é(u” -u"-l) £Q.4.1.7.31

The recurring continuation becomes:

n+l n n-1
-2u"+ c -
Iu u2 u-— . (un —u" 1)+ ku" = f" EQ.4.1.7.32
At At

As above, you obtain the amplification matrix:

2-aintr - B g A
[A]= m m EQ.4.1.7.33
1 0
2042
You have in this casé\; =1- WAL” _cAt andA, =l—g.
2 2m m

01-Jan-2017 14
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Stability is again given by the set of condition3.E.1.7.13:

2
_1+g <]1- aJZAt —ﬂ<1—g

2m 2 2m~ 2m

EQ.4.1.7.34

-1< 1—ﬂ <1
m

Right inequalities are always verified in both preding expressions. Left inequalities now lead to tenditions
on the time step:

c c?
T e Y om
At < At <

1 < cm EQ.4.1.7.35
o C

Therefore, the critical time step depends not dolye but also to the mass and the damping. However, the
critical time step depends only to when using the exact velocities to compute theotis forces as described
in the previous section.

4.1.7.4 Numerical stability with Rayleigh damping

The linearized equations of equilibrium governihg dynamic response of a finite element systendesined
from the equations of motion given in Sections&hf 3.6:

MU} +[clu}+[kKul ={F} EQ.4.1.7.36

In the case of direct step-by-step time integratibis necessary to evaluate the damping matrpep@licitly.
The Rayleigh damping method assumes that the ni&l}ils computed by the following equation:

[C]= alm]+ BlK] EQ.4.1.7.37

where [C] is the viscous damping matrix of the system,
[M] is the mass matrix,
[K] is the stiffness matrix.

As described in the preceding sections, the contiputaf the viscous forces by using velocitiesiatet steps
leads to obtain a non-diagonal matrix [C] which diobe inverted in the resolution procedure. Toicdbe
high cost operations, generally the simplificaticen® made to obtain a diagonal matrix. Substitutiing

Rayleigh equation into EQ.4.1.7.36 and using thel-stép velocities forﬁ[K] terms and at step nodal
velocities fora'[M] terms, the following expression is obtained:

i)+ o o)+ /;[K]{u“%}m{un}:{fn} £041738

Studying the equilibrium of a node to obtain a dimensional equation of motion, write:

mi+cu+ku=f EQ.4.1.7.39
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wherem s the modal mass,
c is the associated modal damping,

k is the nodal stiffness.

This leads to the following recurring continuatiam the displacement:

n+l _ N4yt
mu il:z u + 2’2 (un+1 —u"'1)+%(un _u"‘1)+ ku"=f" EQ.4.1.7.40

The amplification matrix is then:

alt i
2- PN - puiny TH T, YAV
[A]= 1+ 98 14+ A EQ.4.1.7.41
2 2
A2 Bt
1- 5 _B 5 1—%&—[3(02&
In this case A = andA,=—*%
1+LAt 1+LAt

Stability is obtained as before by means of theoebnditions from EQ.4.1.7.13:

1+ P’ At 1- WAt PBarit 1- B’ It
e e
1+Lt 1+Lt 1+a7t
2 2 2 EQ.4.1.7.42
alt
1-"— - Bat
P <1
al\t
1+-—

This again yields two conditions on the time stpning from the left inequalities in both expressio

— Bow++ B +
At < ﬁw '8 o +4 , At< i EQ.4.1.7.43
w Jcina

It is equivalent to consider only tIﬁ{K] contribution in the damping for the computatiortto# time step,

which appears to be logical since ttx{al\/l] contribution is used with the exact velocity.dtadvantageous to
separate the two contributions, restrictions oftilme step then becoming lighter. It can be shdven for the
complete treatment of the Rayleigh damping usindrstép velocities, the stability conditions cangbesn by
the following expressions:

S—a—,@a)z+\/(a+,8af)2+4a)21 AtsL
w a + o

At EQ.4.1.7.44
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4.1.7.5 Example: Critical time step for a mass-
spring system m k m

Consider a free mass-spring system without damping. O\/\/\CD

The governing differential equation can be writtesn

MX +KX =0 @)

The element matrix expressions are given as:

R R

The general solution is assumed in the form of:

X = Cos(at —a)[I |w (b)

where the angular frequen@y and the phase angt® are common for all X @ and ¥, are the constants of
integration to be determined from the initial cdiis of the motion andv is a characteristic value (eigen
value) of the system. Substituting (b) into (a)dse

(K -w'M )LIJCos(cut -a)=0 (©)

The consistency of (c) foW Cos(at — a) # O requires that:

defk -a’M)=0 => wzzz—r: ()

[2k
Assuming the following numerical values= 1 andk =10, you havew =, |— = 4.472136 The critical
m

time step of the system is given by EQ. 4.1.7.20:

Atsg = AtSL = At<04472
w 4.47213¢

4.1.7.6 Example: Critical time step for dropping baly example

A dropping body is studied in Example 4.1.5 withalgtical and numerical approaches. As shown in eigu
4.1.3 the numerical results are closed to the #inalysolution if you use a step-by-step time disization

method with a constant time sté{t =0.1. This value is less than the critical timepstbtained by:

Atcr = i m k
a)max /
which may be computed as: é
Fa
w= X =y20= a,=—2 _ = At =04472
m 4472136
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Therefore, the used time step in the Example 4&astires the stability of the numerical scheme &slétss than
the critical value. Now using the values higherntra equal to the critical time step, the solutitimerges
towards the infinity as shown in Figure 4.1.5.

Figure 4.1.5Numerical instability for Example 4.1.7.6 using p\eitical time steps

dt=0.5
- 25
o
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8 [\ /
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a3 1 -

- \./
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-15

-20

-25

It is worthwhile to comment that in a general egipli
finite element program aRADIOSS the critical time
step is computed for an entire element (two nodal
masses and stiffness for spring element). In cdsq o
dropping body example, the mass-spring system ean b
compared by analogy to a two-node mass-spring
system where the global stiffness is twice soffdre
critical time step is then computed using the naidad
step of the entire element (refer to the followsagtions for more details on the computation ofahtiche step).

4.1.8 Stability by Courant condition

RADIOSS uses elements with a lumped mass apprddah.reduces computational time considerably as no
matrix inversion is necessary to compute accetarati

The integration scheme used by RADIOSS is basedhencentral difference integration scheme which is
conditionally stable, i.e. the time step must bealsrenough to assure that the solution does notvgro
boundlessly.

The stability condition is given in the last seog8o For a system without damping, it can be writtea closed
form:

At<—— EQ.4.1.8.1
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where Cemax is the highest angular frequency in the system:
defK -a?M)=0 EQ.4.1.8.2

whereK andM are respectively the stiffness and the mass neato€the system.

The time step restriction given by EQ. 4.1.8.1 wasved considering a linear system (see SectitrV§.but
the result is also applicable to nonlinear analgsice on a given step the resolution is linearweler, in
nonlinear analysis the stiffness properties chahgeng the response calculation. These changdsimiterial

and the geometry influence the value%f‘ax and in this way the critical value of the timepste

The above point can be easily pointed out by uaingnlinear spring with increasing stiffness in Bypée 4.1.5.
It can be shown that the critical time step de@sagshen the spring becomes stiffer. Therefore, dbmastant
time step close to the initial critical value isne@ered, a significant solution error is accumadabver steps
when the explicit central difference method is used

Another consideration in the time integration digbiconcerns the type of problem which is analyz&dr

example in the analysis of wave propagation, eelagmnber of frequencies are excited in the systérat is not

always the case of structural dynamic problemsa lwave shock propagation problem, the time stept ipeis
small enough in order to excite all frequencieshia finite element mesh. This requires short titep so that
the shock wave does not miss any node when trgvéiimugh the mesh. It follows that the time stepwdd be

limited by the following relation:

|
At < ?C EQ.4.1.8.3

where: Figure 4.1.6Bar element

Ic is the characteristic element length, representirgy
shortest road for a wave arriving on a node tostoe
element,

c is the speed of sound in the materi@f, is the time
step.

The condition EQ. 4.1.8.3 gives a severe time sfep

A<t

restriction with respect to stability time stepi.e  @.
It can easily be shown that for a simple case dn‘aa | |
element, the two expressions EQ. 4.1.8.3 and E8.4.
are equivalent.

Qr
o N

If a wuniform linear-displacement bar element is
considered, (Figure 4.1.7), and a lumped mass fation at the nodes is used, the highest frequerfidhis
element can be obtained by a resolution of an eigére problem:

[KKx} =M X} EQ.4.1.8.4
det[K]-e?[M])=0 EQ.4.1.8.5

For a lumped mass bar, you have:

[K]= k{ 1 _ﬂ EQ.4.1.8.6
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M]= W{(l) ﬂ EQ.4.1.8.7

wherem andk are respectively the nodal mass and stiffneskeobar:

k=— :m=—-— EQ.4.1.8.8
[ 2 Q

Equation 4.1.8.5 yields:

(k-ma?f -k? =0 EQ.4.1.8.9
then:
2k
w=,= EQ. 4.1.8.10
m

which can be simplified with EQ. 4.1.8.8 to obtain:

2 |[E_2c
w=— |—=—" EQ.4.1.8.11
Vo |

wherec is the speed of sound in the material and itsesgion is given as:

P EQ. 4.1.8.12

with O the material density arieithe Young’s modulus. Combining EQ. 4.1.8.11 and £Q.8.1, you obtain:

st

C EQ.4.1.8.13

Figure 4.1.7 Element Characteristic Lengths

/
1 =0.7071 !
I =0.866]

1. =S8/D
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This relation is that of EQ. 4.1.8.3 and shows thatcritical time step value in the explicit tirmgegration of

dynamic equation of motion can be carried out leyitiierpretation of shock wave propagation in treemal.

This is shown for the first time by Couraattal. in 1928 [56]. In spite of their works are limitéalsimple cases,
the same procedure can be used for different kifdisite elements. The characteristic lengthshef elements
are found and EQ. 4.1.8.3 is written for all eletsep find the most critical time step over a meé®bgarding to
the type (shape) of element, the expression ofadheristic length is different. Figure 4.1.7 shasne typical
cases for elements with one integration point.

4.1.9 Time Step Control in RADIOSS

The time incrementation in RADIOSS is fully automa&nda priori requires no user intervention. The step
used for time integration (or moving forward in &jrcan be calculated using two different methode method
used depends on the type of simulation being pedr

The two time step methods are:
« the element time step,
« the nodal time step.

The time step used by the solver is the largessiblestime step, as determined by the Courant ¢iamdihat
will maintain stability. If the default large straformulation is used, the time step is computedaath cycle.
Large element deformation can give a large timp dexrease. If the deformation is too large, negatdlumes
can result, which make it impossible to invert #faeobian matrix and to integrate the stress overttume. If
the small strain formulation is used, assuming astamt Jacobian matrix during time and also a eonmst
volume, all spatial variables are defined at0. This is either the beginning of the analysisha time at which
the small strain formulation is initiated. If theund speed is constant, the time step thus becooregant.
Using this formulation, the time step has no effatthe computation since the initial volume iscuse

4.1.9.1 Element time step control

The stable element time step was detailed in Sedtib.8 and is restated as:

. I
At = mmElmts(—) EQ.4.1.9.1
c

where:
» |isthe element characteristic length,

e cis the speed of sound in the material.

This is the default setting.

The element time step is computed at the same dsnthe internal forces. The characteristic lengtth gne
sound speed are computed for each element in eyels.

The computed time step is compared to a minimune titep value and a scale factor is applied to enaur
conservative bound. Different minimum time stepuesl can be given to different element types byguthe
option: DT/Keyword whereKeyword is defined in the user manual as the element type.

If deformation is large enough for the time stepdach the minimum defined value, three optionspassible
under the user's control:

» Stop the analysis when the minimum time step viueached. This is the default for brick and
guadrilateral elements.

» Delete the element(s) defining the time step. Thike default for shell elements.

« Implement small strain formulation using a constane step. This only works for shell and brick
elements.

These options are defined using a third keyw8I®P, DEL, CST, AMSor SET.
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4.1.9.2 Nodal time step control

The nodal time step is calculated after the contfmutaof all the internal forces at each node ushegfollowing
equation:

At = minNodm/sz EQ.4.1.9.2

wherem is the nodal mass and k an equivalent nodal ss&n

The nodal stiffness is one half of eigen value frelmment stiffness matrix; for a truss element thkie is
equal to the diagonal term of the stiffness mattiis computed from the accumulation of elemert anterface
stiffness’. These stiffness’ are obtained durirtgrinal force computation.

For a regular mesh, the element time step and rimdalstep conditions are identical. For examg&eta truss
element, Figure 4.5.2. Using an element time stelition:

I
Ate'emem :E = _E EQ. 4.1.9.3
Yo
The nodal time step condition is written as:
2m
At g = T EQ.4.194
1 EA
with m:EpAI and k :I— EQ.4.1.9.5
Therefore:
A 11
At o = =—=—=At EQ.4.1.9.6

B T
0

To select the nodal time step when running RADI@&Soption /DT/NODA has to be used.

As for the element time step, minimum time step scale factors are required. The default valugterscale
factor is 0.9. If the minimum time step is reach#tg analysis can either be stopped or a massngcali
formulation can be applied. In the latter case,aasdded to the affected nodes so that the tieeremains
constant at the minimum value. This option canebked using the same third keyword as used irlgmaent
time step control. It must be checked that addedsesmdo not affect the accuracy of results. If uses the
nodal time step, the element time step is ignored.

4.1.9.3 Interface time step control

Finally, the time step is influenced by existenténterfaces. The interface time step control dejseon the type
of interface being used.

For the interfaces in which the contact conditians defined by applying kinematic conditions, nodistep
restriction is required. This is the case of irdeef type 2 of RADIOSS.

In addition, for the interfaces types 3, 4, 5, 8id RADIOSS a small stiffness is used. Thereftre,interfaces
are stable if a time step scale factor less thaqoal to 0.9 is used.
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Types 7, 10 and 11 interfaces use a variable sgffrand if this stiffness is not small compareth®oelement
stiffness, a stability condition must be adhered to

For interfaces 3, 4, 5, 7, 8, and 10, there ametpossibilities that can be selected shown inerddl. 1.

Table 4.1.1 - Interface Time Step Cases

Default (element) time step without interfaces g/@eElement time step is computed and a scaling f
10 or 11 0.9 (default) is applied.

Option /DT/NODA is used with or without interfg Nodal time step is computed and a scaling factcﬁ.g
types 7 and/or 10, 11 (default) is applied.

Nodal and element time steps are computed an
smallest is used.

Default time step with interface types 7 or 10, 11

If the deletion option is applied with tHBT/INTER/DEL interface time step control, the node controllthg
minimum time step is deleted from the interface.

Mass scaling, where mass is added to an interfade, tan be enabled using the opti@¥/INTER/CST

4.1.10 Time step control limitations

Many of the time step control options influence gwution results. The solution of the nonlineanayic
response of a finite element system accurate isthgerical model correctly represents the physivadel. The
critical time step given for finite element systésndetermined by a theoretical approach in which lifghest
frequency of the discretized system controls tldki@. Therefore, the time step limitations areteslao the
model and cannot be changed without incidence ewmtiality of results.

Using the "DEL" option can significantly alter thmodel, since elements and nodes are removed without
replacement. In fact, mass and/or volume is losing either /DT/NODA/CST or /DT/INTER/CST will add
mass to the model to allow mathematical solutidre @added mass will increase the kinetic energys $hould

be checked by the user to see if there is a sggmifieffect. Switching to a small strain optionngsbrick or shell
elements also introduces errors as it was seeadtich 2.12.

Generally, in the study of the nonlinear dynamgpanse of a system, three physical laws have tedgected:
* Conservation of mass,
» Conservation of energy,
» Conservation of momentum dynamic equilibrium.

The last one is generally respected as the equetiomotion is resolved at each resolution cyclewideer, in the
case of adding masses especially when using /DT/INOBT option, it is useful to verify the momentum
variation. The two other conservation laws areengilicitly satisfied. They should be checked a eosti after
computation to ensure the validity of the numerinaldel with respect to the physical problem.

4.1.10.1 Time step example

Explicit scheme stability condition

MX +KX =0 EQ. 4.1.10.1

X =M KX EQ. 4.1.10.2

X ;=X | +diX, EQ.4.1.10.3
n+> n-=

X, =X, +dtX EQ. 4.1.10.4
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EQ. 4.1.10.2 and EQ. 4.1.10.3 are added:

X =X | +diMTKX,

n+- n-
2 2
The following equation is obtained:

X =X, +dtM KX,
n—E n—E—

When EQ. 4.1.10.6 is subtracted from EQ. 4.1.18n8,EQ. 4.1.10.4 is used:

X ,=AX | -X
n+= n-- n---1
2 2 2

Where A= 2| +dt*’M 7K
For non divergence of EQ. 4.1.10.7:

=> A: largest eigen value of A-l is smaller than 1
=> def}l +1 +dt?M *K)=0

=> def (1 +1)/dt?)+M K )=0

=> 20t? > largest eigen value dil K

=>2dt?< smallest eigen value @K M

Application
kel kez
1 1 1 1
E E m,, E my 2 m,,
o, = |2
ke|
ot = |2
k

dt, = min(dt,, dt, )

dtn - rnel + rneZ
kel + keZ
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Interface
Interfaces have stiffness but no mae; =0
Solution 1: (interface type 3, 4, 5)

kinterface<< Kelements

Solution 2: nodal time step (interface type 7 aypet10):

dtn = 1 /Zk_m k = z kinterface + Z kelements

Kinematic time step (interface type 7):
dt < (gap-pene)/2 V

V: impact speed

4.2 Large Scale Eigen value Computation

The numerical solution of large scale algebraieerigalue problems is now available thanks to newhous
and software. A class of methods called Krylov palse projection methods is used. The well knownckas
method is the first one. The Arnoldi method is aegalization of Lanczos method applied to the ngmsetric
case. A variant of Arnoldi-Lonczos scheme called timplicitly Restarted Arnoldi Method [97] is a paof

public domain software package called ARPACK whintegrated in RADIOSS. Restarting is introduesda
way to overcome intractable storage and computaticequirements in the original Arnoldi method. lioip

restarting is a variant of restarting which maydmmnsidered as a truncated form of the powerful icitpt

shifted QR technique that is suitable for largelesgaoblems. It provides a mean to approximateva éegen
values with user specified properties in space qgntamal to the number of eigen values requirece @htails of
the method are not explained here. The readevitedto consult [97] for a deep lecture.

4.3 Combining Modal Reduction on sub-domain and Dect
Integration Methods

A domain decomposition method allowing the comboraiof nonlinear sub-domains with linear modal sub-
domains has been proposed in [107]. With this teghs the displacement field in the linear sub-diomas
projected on a local basis of reduction modes tatied on the detailed geometry and the kinematiticoity
relations are written at the interface in orderéoombine the physical kinematic quantities of wlisub-
domains locally. The method yields promising saveamputing time in industrial applications. Howeyvthe
use of modal projection is limited to linear subygons. In the case of overall rigid-body motionhwmall
local vibrations, the geometrical nonlinearity afbsdomains must be taken into account. Therefdre, t
projection cannot be used directly even thoughtdlubal displacements may still be described bymalls
number of unknowns; for example six variables tpregs motion of local frame plus a set of modardioates
in this frame. This approach is used in the casenpficit framework in [108]. In the case of dirdategration
with an explicit scheme an efficient approach issgnted in [109]. One of the main problems is terdeine the
stability conditions for the explicit integratiocteeme when the classical rotation parameters a Bables or
spin vectors are used. A new set of parametergdbas the so-called ‘frame-mass’ concept is intoeduto
describe the global rigid body motion. The positemd the orientation of the local frame are givenfdur
points where the distances between the points ap¢ &onstant during the motion. In this way, orie t
displacement type d.o.f. is dealt and the equatisnotion are derived to satisfy perfectly thebdtty
conditions. This approach, which was integrateRA&DIOSS V5, will be presented briefly here. Thedeais
invited to consult [109] for a detailed view.
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4.3.1 Linear modal reduction

A modal reduction basis is defined on one or matedomains of the decomposition. The definitiontlas
basis is completely arbitrary. Any combinationedjen modes and static corrections can be usetithéde
modes are orthogonalized with respect to the figléenent mass matrix in order for the projectedsmaatrix to
be diagonal and suitable for an explicit solver.

Considering the case of a structure divided into $wb-domains, assume that modal reduction is esduhear
Sub-domain 1. Thus, the displacement field of shis-domain is projected onto the reduction vectors

U, ()= a, ()0, =0.a,t) EQ.43.1.1
1

with U, vector of discretized displacements in Sub-donaier; vector of modal participations. This naturally
yields:

U, =04
1 11 EQ.4.3.1.2
Ul :(I)ldl

The number of modal unknowrts, chosen is much smaller than the original numbetdegfrees of freedom of
Sub-domain 1.

In order to obtain the new coupled system, the dyaaquilibrium of sub-domain 1 must be projectedoathe
reduction basis and the velocities involved in kiveematic relations must be expressed in term$i@frbodal
coordinates. Thus, write the new matrix systenafeingle time scale as:

E'\A/Il 0 'EélT M .on+l EIAzlnﬂ
2 2 0 AZ

0 %MZ -%CZT ot | = ?th”*l EQ.43.13
-%él -%Cz 0 L N ClPdT+l+C2PU;+1

ext1
where | N
Kl = q)l Kl(Dl
é1 = C1(D1

The structure of this system is strictly identitathat which existed before reduction. Therefose exactly the
same resolution process and apply the multi-tirep-atgorithm.

The time step for a reduced sub-domain is deduaed the highest eigen frequency of the projectestiesy in
order to preserve the stability of the explicitéinmtegration. This time step is often larger tttzat given by the
Courant condition with the finite element modeldrefreduction.

4.3.2 Modal reduction with finite overall rotations

Since large rotations are highly nonlinear [50]e ttlisplacement field in a sub-domain undergoingtefin
rotations cannot be expressed as a linear combimaficonstant modes. However, the rigid contiduto the
displacement field creates no strain. In the adsamall strains and linear behavior, the locarailng system
can still be projected onto a basis of local reidncodes. Then, take into account the rotatiotrimfrom the
initial global coordinate system to the local capade system and its time derivatives. A classical
parameterization of this rotation, for example, éeubngles, would introduce nonlinear terms invaivin
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velocities. Since these quantities, in the centiierence scheme, are implicit, this would requinternal
iterations in order to solve the equilibrium prahlea situation you clearly want to reduce the cotagion time
due to the reduction.

Classically, the displacement field of a rotatimgl aiibrating sub-domain is decomposed into a finged-body
contribution and a small-amplitude vibratory camition measured in a local frame. The large rigition is
represented using the so-called “four-mass” apr¢H@9].

Four points(O, A, B, C) in space are arbitrarily chosen to represent dsitipn of a local frame attached to the

sub-domain. In order to simplify the local equatipchoose these points so that they constitutgthn-normal
frame.

Note: The four points defining the local frame do navé to coincide with nodes of the mesh.

4.3.2.1 Decomposition of displacement field

The global displacements of these four points lageunknowns describing the rigid motion of the glolaain.
These are classical displacement-type paramefédrs.relative distances between these points areckeystant
during the dynamic calculation through externalkd$in This enables us to express the total contiguou
displacement field of the sub-domain as follows:

u=Xu, +Yug +Zue +(1- X =Y = Z)u, + Pu_ = u, +Pu, EQ. 4321

where X,Y,Z are the coordinates in the local fravﬁ@, A B, C],
P is the rotation matrix expressing the transforomafrom the local to the global coordinates: since
(CTA, CTB,CYS) are unit vectorsP = [abg» ﬁé,o_c’] .

In order to express the dynamic equilibrium, EQ.%4 must be derived with respect to time to yiadtbcities
and accelerations.

0= X0, +Yug +Z0g +(1- X =Y =Z)u, + Bu, + Py,

.. . EQ.4.3.2.2
0= Xu, +YUg +ZUs +(1- X =Y =Z)t, + Pu_+Pu,_ + 20,
The time derivatives of the rotation matrix areegiby:
P=|u, = Uy;Ug = Uy;Ue — U
[ A 0'-B (R hale o] EQ.4.3.2.3

P:[UA - UO;UB - uo;uc - Uo]
Thus, the fields in EQ. 4.3.2.2 have the followaxgpression:

u =(x +uLX)uA+(Y+uLY)UB +(Z+uLZ)UC+ [1—(x +uLX)—(Y+uLY)—(Z+uLZ)]uO
+F7(JL

U= (X +uLX)'uA+(Y+uLY)UB +(Z+uLZ)‘uC+ [1—(X +uLX)—(Y+uLY)—(Z+uLZ)]uO
+Pu, + 2P0, EQ.4.3.2.4

where u,_)< ,u,_Y ,ul_Z are the components of the local displacementeridbal frame. The assumption of small
perturbations in the local frame enables us to idenghat the rigid and the deformed configuratiems the

same, that is, you can neglel.(t[>< ,ul_Y,uLZ compared to the local coordinateX,,Y,Z . Thus, you get
simplified expressions of the velocity and accdlergfields:
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0= XU, +Yig + 20, +(1- X =Y =2Z)u, + Ru,
0= Xi, +Yug + Zug +(1- X -Y =Z)i, + Fu, + 2Pu, EOQ. 4.3.2.5
To express the weak form of the dynamic equilibriyou also need the variatiadu of the displacement field:

8U=X8U, +Y8Ug +Z8uc +(1-X -Y =Z)8u +8Pu, +Pdu,

EQ.4.3.2.6
whereép = [éuA —0Ug;0ug —dUy;dUc —éuo]
Again, the same assumption as above allows usnlify this expression:
SU=X3Up +Y8ug +2Z8uc +(1-X-Y -Z)3ug +Pdu, Q. 4327
4.3.2.2 Local reduced dynamic system
The local dynamic equilibrium of the sub-domaigigen by:
pi—f, (u)=0 EQ.4.3.2.8

The principle of virtual work yields a weak form difis equilibrium, taking into account, Dirichletgte
boundary conditions:

jdeTudQ J'dj f (u)de=0 EQ.4.3.2.9

Au verifies the kinematic boundary conditions

Q is the volume of the sub-domain.

To introduce EQ. 4.3.1.4 into this weak form of #wpiilibrium, you must express with the new paramzation
the virtual works of both the internal and exterfates and the virtual work, due to the rigid Br&kmong the
points defining the local frame.

The internal forces can be calculated from thellpeat of the displacement, using EQ. 4.3.2.1 akihg into
account the rigid links, for example, the fact ttigplacement_ creates no strain,

fine () = Pfine (uy)=Pdiv [o (u)] EQ.4.3.2.10

Where, index L expresses that the coordinatestandgdatial derivatives are taken in the local frame

The virtual work of the internal forces is then:

- jdﬂ Pdiv, [o, (u, )]de EQ.4.3.2.11
Q

The integration by parts in the local frame introelsl external surface forcfe@% :
Wit :_jGL( L)E (PT6u)dQ+j6u Po, (u, )n do
Q
joL p 6u)dQ+J.&JTfextdS
Q

EQ.4.3.2.12
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WhereI is the boundary of2, N, is the normal td" expressed in the local frame.

To compute forces associated to the rigid linkst,finew Lagrange multipliers are introduced toregp the
energy of a link:

W= 2. A,D,(uuy) EQ.4.3.2.13

(1,3)0(0,A,B.C)?
J>|

Where D, :H(X? +u, )—(Xg +UJ)‘—HX? —Xg“ and X? are the initial coordinates of poimtand the

rigid link between points andJ is given by: D, (uI WUy ) =0.

Then, the differentiation of this energy is useabdain the virtual work to be introduced into theak form of
the equilibrium:

Mos Taobn) 3 o s a, Ol

(1,3)3(0,A,B,C)? 10(0,A,B,C) Jo(o,ABC) al—h
J>1 JZI

EQ.4.3.2.14

D&u, 10(0,A,B,C)

Note: The quantity Z A, M

JO(0,A,B.C) 0 |
J#l

| to preserve the distances from this point to thermpoints of the local frame.

Fins; Can be viewed as the resisting force applied totpo

4.3.2.3 Weak form of equilibrium

Now, let us express the displacement field usingdE32.1 and the local field projected on a Ritgia

3
U= Upok +UpY +UCOy +Upely_y—z +Y'PoL
i=1

=0pU EQ.4.3.2.15

where @ =Xe , ¢, =Yg, 0, =Ze, @) 4y, = (1— X —Y—Z)ei ,(Q & ,e3) is a basis of the
global frame,{ (p'L} is a basis of local Ritz vectors obtained, forregke, by finite element discretization or by

modal analysidJ is the vector of the discrete unknowns:

fu] | T
B g

Al
|

(e}
1
c
¢
O

L

]
E]With U, = E:B} and U, :[y‘] ,
]

@, is the projection basigb, = [{(Pix}'{(Piv}'{(PiZ}'{(Pil-x_y_z},{P(piL}] =[(I>E,P(I)L].
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EQ.4.3.2.5 and EQ.4.3.2.7 yield:

a=a,U
u= (DPO + G(O) EQ.4.3.2.16

a=d,00

A

where G(U) is the gyroscopic contribution to the acceleratiginen by:

6 0)= 2¢([us,] i ][] [ Jo, O

The final expression of the complete weak formhef dynamic equilibrium is obtained as:
[807 (0, Jo,Gpde2 + jaJT(@;)G(ojpdg +[o(0,0,): & (w,a0)e
Q Q Q

EQ.4.3.2.17
—&\TD(UE)—aOETF,inkS(/\,UE)zdeT(chT)rmds
r
where @, :{¢'L}
ve =[P o {Pr P e P ol Holll = [Proe o, |
D is the vector formed by the 6 relations preservimgrelative distances of poin(@, A, B, C),
N\ is the vector of the Lagrange multipliers corresting to each rigid link,

Fiinks is the vector of the link forces given by Equat(8a).

EQ. 4.3.2.17 can be rewritten using classical mafmihd vector operators obtained by finite element
discretization:

A~

™™, U + dCJTFgw(CJ) +d0'K U, —&\TD(OE)—dJETEmkS(/\, UE)z AF,,, EQ43218

where M, =6PTM5P, with M being the classical mass matrix of sub-domand 6P being the

projection matrix consisting of vectors df, discretized on the nodes of the mesh:

Fo (Uj = i (@r b(ljjde EQ.4.3.2.19

K. =¢PTK5L, with K being the sub-domain’s local stiffness ratnd ¢p and 6L deduced (as was
@, ) from W,, @, and the meshE, , = ®,'F,, , with F,. being the classical vector of the external forces

assembled on the sub-domain.

Now, you are able to reduce the number of unknoemshe sub-domain drastically by choosing as the Ri
vectors, instead of classical finite element shapetions, an appropriate (and small) family ofdbceduction
vectors. The modal vibration problem is purelyaloand guidelines found in the literature for theger choice

of the projection basis apply here.
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Note 1

As far as inertia coupling with local vibration aoderall large motion is concerned, two separatgridmtions
must be considered. The first contribution appéarthe projected mass matrix, which as now theofaihg
form:

M MT
M, { E C} EQ.4.3.2.20
MC MV

where M is the constant mass matrix corresponding onlythte global displacement field given by
Xu, +Yu, +ZUC+(1—X —Y—Z)UO, My is the constant mass matrix corresponding to Itual

vibration given by u Mc is a coupling matrix, variable with overall rotati arising from the interaction
between the local vibratory acceleration field egsed in the global fram®l, and the overall virtual

displacement fieldXdu, +Ydug + Zdu, + (1— X-Y- Z)dJo; MZ naturally comes from the symmetric
interaction between virtual local displacementdiahd the overall acceleration field.

The second contribution to the inertia couplinthis gyroscopic forces.

Note 2
In RADIOSS a special procedure is used to lineatieerigid links. The method is fully explained[t09].

Note 3

The rigid body motion component of the displacemeatement is computed in unconditionally stableyvos
the use of Lagrange Multiplier to impose the ritiiks. The deforming part is generated by the laghfation
modes retained in the reduction basis. Therefare,can conclude that the stability condition is $hene as that
given by the local vibrating system. The criticaheé step is constant throughout the calculation eand be
derived from the highest eigen frequency of thall@educed stiffness matrix with respect to thealaeduced
mass matrix.

The highest eigen frequendy, is given by the system:
O KDV = O MD V EQ.4.3.2.21
i (2
where @ =1@ [ andf =—.
= anar =2

Having determined, .,
the stability of the time integration is:

the maximum time step which can be used on tecedd sub-domain while ensuring

At =1 EQ.4.3.2.22

max T f

max
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