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4.0 DYNAMIC ANALYSIS 
The discrete form of the equation of motion given in Section 3.5 represents a system of linear differential 
equations of second order and, in principal the solution to the equations can be obtained by standard procedures 
for the solution of differential equations with constant coefficients. However, in practical finite element analysis, 
a few effective methods are used. The procedures are generally divided into two methods of solution: direct 
integration method and mode superposition. Although the two techniques may at first look to be quite different, 
in fact they are closely related, and the choice for one method or the other is determined only by their numerical 
effectiveness. 

In direct integration the equations of motion are directly integrated using a numerical step-by-step procedure. In 
this method no transformation of the equations into another basis is carried out. The dynamic equilibrium 
equation written at discrete time points includes the effect of inertia and damping forces. The variation of 
displacements, velocities and accelerations is assumed with each time interval t∆ . As the solution is obtained 
by a step-by-step procedure, the diverse system nonlinearities as geometric, material, contact and large 
deformation nonlinearity are taken into account in a natural way even if the resolution in each step remains 
linear. 

The mode superposition method generally consists of transforming the equilibrium equation into the generalized 
displacement modes. An eigen value problem is resolved. The eigen vectors are the free vibration mode shapes 
of the finite element assemblage. The superposition of the response of each eigen vector leads to the global 
response. As the method is based on the superposition rule, the linear response of dynamically loaded of the 
structure is generally developed. 

In the following, first the resolution procedure in direct integration method when using an explicit time 
discretization scheme is described. Then, the procedures of modal analysis are briefly presented. The implicit 
method will be detailed in Chapter 12. 

 

4.1 Direct Integration Method via Explicit Scheme  

In transient dynamic analysis, the direct integration method is usually chosen. A few commonly used integration 
methods exist in the literature [54]. The method used in RADIOSS is derived from Newmark time integration 
scheme. 

This section deals with time integration of accelerations, velocities and displacements. The general algorithm for 
computing accelerations, velocities and displacements is given. Stability and time step aspects are then 
discussed.  

4.1.1 Newmark's Method  
Newmark's method is a one step integration method. The state of the system at a given time htt nn +=+1  is 

computed using Taylor's formula: 
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The preceding formula allows the computation of displacements and velocities of the system at time 1+nt : 
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The approximation consists in computing the integrals for acceleration in 4.1.1.3 and in 4.1.1.4 by numerical 
quadrature: 
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In replacing EQ. 4.1.1.3 and EQ. 4.1.1.4, one has: 

( ) 11 1 ++ +−+= nnnn uhuhuu ɺɺɺɺɺɺ γγ    EQ. 4.1.1.7 

nnnnnn ruhuhuhuu ′++
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ɺɺɺɺɺ ββ    EQ. 4.1.1.8 

According to the values of γ  and β , different algorithms can be derived: 

• 0,0 == βγ : pure explicit algorithm. It can be shown that it is always unstable. An integration 

scheme is stable if a critical time step exists so that, for a value of the time step lower or equal to 
this critical value, a finite perturbation at a given time does not lead to a growing modification at 
future time steps.  

• 0,2/1 == βγ : central difference algorithm. It can be shown that it is conditionally stable. 

• 2/1,2/1 == βγ : Fox & Goodwin algorithm. 

• 6/1,2/1 == βγ : linear acceleration.  

• 4/1,2/1 == βγ : mean acceleration. This integration scheme is the unconditionally stable 

algorithm of maximum accuracy. 

4.1.2 The Central Difference Algorithm 

The central difference algorithm corresponds to the Newmark algorithm with 
2

1=γ  and 0=β  so that EQS. 

4.1.1.7 and 4.1.1.8 become: 
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n
2

1nn1nn1n u*h
2
1

uhuu ɺɺɺ +++ ++=    EQ. 4.1.2.2 

with 1+nh  the time step between nt  and 1+nt . 

It is easy to show [38] that the central difference algorithm can be changed to an equivalent form with 3 time 
steps: 
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if the time step is constant. 

From the algorithmic point of view, it is, however, more efficient to use velocities at half of the time step: 
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so that: 
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Time integration is explicit, in that if acceleration nuɺɺ  is known (see Section 4.3), the future velocities and 

displacements are calculated from past (known) values in time: 

• 
2

1+n
uɺ  is obtained from EQ. 4.1.2.5: 
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The same formulation is used for rotational velocities. 

• 1+nu  is obtained from EQ. 4.1.2.4: 

2
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n

nnn uhuu ɺ    EQ. 4.1.2.8 

The accuracy of the scheme is of 2h  order, i.e. if the time step is halved, the amount of error in the calculation is 
one quarter of the original. The time step h may be variable from one cycle to another. It is recalculated after 
internal forces have been computed.  

4.1.3 Numerical Starting Procedure  
At time t = 0, the displacement u and velocity 0uɺ  are known from initial conditions. The acceleration 0uɺɺ  and 

time step 1h  are found from solving the equations of motion. The initial time step 0h  is set to zero:  

00 =h  ;   
2
1

2

1

h
h =      EQ. 

4.1.3.1 

0

2

1 uu ɺɺ =
−

   EQ. 4.1.3.2 

0

2

10

2

1 uhuu ɺɺɺɺ +=    EQ. 4.1.3.3 



RADIOSS THEORY Version 2017  DYNAMIC ANALYSIS 
 

01-Jan-2017 6

4.1.4 Algorithm Flow Chart 
The flow chart of the central difference algorithm can be summarized as in Fig. 4.1.1. It is pointed out that the 
solution of the linear system to compute accelerations is immediate if the mass matrix is diagonal. 

 

Figure 4.1.1 Numerical Procedure 
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4.1.5 Example: Dropping body 
The question “how far can a body be dropped without incurring damage?” is frequently asked in the packaging 
manufacturing for transportation of particles. The problem is similar in landing of aircrafts. It can be studied by 
an analytical approach where the dropping body is modeled by a simple mass-spring system (Figure 4.1.2). If h 
is the dropping height, m and k the mass of the body and the stiffness representing the contact between the body 
and the ground, the equation of the motion can be represented by a simple one d.o.f differential equation as long 
as the spring remains in contact with floor:  
 

Figure 4.1.2 Model for a dropping body 

 

mgkxxm =+ɺɺ    EQ. 4.1.5.1 

In this equation the damping effects are neglected to simplify the solution. The general solution of the 
differential equation is written as: 
 

CtCosBtSinAx ++= ωω    EQ. 4.1.5.2 

 
where the constants A, B and C are determined by the initial conditions: 
 

At t=0 => 0=x  , ghx 2=ɺ  , gx =ɺɺ    EQ. 4.1.5.3 

ω  is the natural frequency of the system: 
m

k=ω  

 
Introducing these initial solutions into 4.1.5.3, the following result are obtained: 

( )tCos
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x ω
ω

ω
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2

2
   EQ. 4.1.5.4 

The same problem can be resolved by the numerical procedure explained in this chapter. Considering at first the 
following numerical values for the mass, the stiffness, the dropping height and the gravity: 
 

m = 1 ,  k = 20  ,  h = 1 ,   g = 10    EQ. 4.1.5.5 
 
From EQ. 4.1.5.1, the dynamic equilibrium equation or equation of motion is obtained as: 
 

1020 =+ xxɺɺ    EQ. 4.1.5.6 

 
Using a step-by-step time discretization method with a central difference algorithm, for a given known step tn the 
unknown kinematic variables for the next step are given by EQ. 4.1.5.6, EQ. 4.1.2.4 and EQ. 4.1.2.5: 

m 

k 

h 

x 

ghx 2=ɺ
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For the first time step the initial conditions are defined by EQ. 4.1.5.3. Using a constant time step 1.0=∆t  the 
mass motion can be computed. It is compared to the analytical solution given by EQ. 4.1.5.4 in Figure 4.1.3.  
The difference between the two results shows the time discretization error. 

 
 

Figure 4.1.3 Obtained results for the example 4.1.3 

 

4.1.6 Numerical Stability 
The definition of numerically stability is similar to the stability of mechanical systems. A numerical procedure is 
stable if small perturbations of initial data result in small changes in the numerical solution. It is worthwhile to 
comment the difference between physical stability and numerical stability. Numerical instabilities arise from the 
discretization of the governing equations of the system, whereas physical instabilities are instabilities in the 
solutions of the governing equations independent of the numerical discretization. Usually numerical stability is 
only examined for physically stable cases. For this reason in the simulation of the physically unstable processes, 
it is not guaranteed to track accurately the numerical instabilities. Numerical stability of a physically unstable 
process cannot be examined by the definition given above. You establish the numerical stability criteria on the 
physically stable system and suppose that any stable algorithm for a stable system remains stable on an unstable 
system [36].  
  
On the other hand, the numerical stability of time integrators discussed in the literature concerns generally linear 
systems and extrapolated to nonlinear cases by examining linearized models of nonlinear systems. The 
philosophy is the following: if a numerical method is unstable for a linear system, it will be certainly unstable 
for nonlinear systems as linear cases are subsets of the nonlinear cases. Therefore, the stability of numerical 
procedures for linear systems provides a useful guide to explore their behavior in a general nonlinear case. 
 
To study the stability of the central difference time integration scheme, you establish the necessary conditions to 
ensure that the solution of equations is not amplified artificially during the step-by-step procedure. Stability also 
means that the errors due to round-off in the computer, do not grow in the integration. It is assured if the time 
step is small enough to accurately integrate the response in the highest frequency component.  
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4.1.7 Stability of the explicit scheme 
In direct integration method, at time tn the solutions for the prior steps are known and the solution for the time 

ttt nn ∆+=+1  is required next. The equations to relate displacements, velocities and accelerations in a discrete 

time scale using the central difference time integration algorithm are given in Section 4.1.2. They can be 
rewritten as the following: 
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   EQ. 4.1.7.1 

For stability studies, aim to establish a recursive relationship to link the displacements at three consecutive time 
steps: 
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   EQ. 4.1.7.2 

where [ ]A  is called amplification matrix. A spectral analysis of this matrix highlights the stability of the 

integration scheme: 

The numerical algorithm is stable if and only if the radius spectral of [ ]A  is less than unity. In the other words 

when the module of all eigen values of [ ]A  are smaller than unity the numerical stability is ensured. 

 

The stability of a numerical scheme can be studied using the general form of the 2x2 matrix [ ]A : 

[ ] 







=

2221

1211

AA

AA
A    EQ. 4.1.7.3 

Then, the equations are developed for the systems with or without damping [55]. 

The eigen values of [ ]A  are computed from the characteristic polynomial equation: 

[ ] 0IAdet =− λ    EQ. 4.1.7.4 

0AA2 21
2 =+λ−λ  

where [ ] ( )22111 AA
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1
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1
A +== A , 

 [ ] 211222112 Adet AAAAA −== . 

The eigen values are then obtained as: 

2
2
112,1 AAA −±=λ    EQ. 4.1.7.5 

If 2
2
1 AA < , eigen values are complex conjugate; if 2

2
1 AA = , they are real and identical; if 2

2
1 AA > , they 

are real and distinct. You intend to define a stability domain in the ( )21 A,A -space, where the spectral radius 

[ ]( ) ( )( ) 1A,Amax 21i ≤λ=ρ A . The boundary of this domain is given by couples ( )21 A,A  such as 

[ ]( ) 1=ρ A . Three cases are to be considered: 
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1. Roots are real and one of them is equal to 1: 
 
You then have: 

0AA21 21 =+−    EQ. 4.1.7.6 

This yields: 
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   EQ.4.1.7.7 

The corresponding part of the boundary of the stability domain is the segment analytically defined by 
0AA21 21 =+−  and 1A1 2 ≤≤− . 

 
2. Roots are real and one of them is equal to –1 : 

 
You then have: 

0AA21 21 =++    EQ.4.1.7.8 

This yields: 
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In this case, the corresponding part of the boundary is the segment given by 0AA21 21 =++  and 

1A1 2 ≤≤− . 

 
3. Roots are complex conjugate : 

Their modulus is equal to 1. You then have, using α±=λ i
2,1 e :  
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This yields: 
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   EQ.4.1.7.11 

 
Since 0sin ≠α , you obtain: 
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         EQ.4.1.7.12 

The corresponding part of the boundary is thus the segment given by 1A 2 =  and 1A1 1 ≤≤− . 

 
The 3 segments introduced above define a closed contour. Point 0AA 21 ==  is located inside this contour and 

in this case, [ ]( ) 0=ρ A . Since [ ]( )Aρ  varies continuously with respect to A1 and A2, you can conclude that the 

stability domain corresponds to the interior of the contour. To precisely define the stability domain, you must 
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also have points leading to double eigen value of modulus 1, i.e. the intersections between the parabola 

2
2
1 AA =  and the boundary of the domain. This corresponds to Points ( ) ( )1,1A,A 21 ±= . 

 
Figure 4.1.4 Stability domain 

 
You can analytically summarize the description of the stability by means of the following two sets of conditions: 
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4.1.7.1 Numerical stability of undamped systems 
The stability conditions developed in the previous section can be applied to a one degree-of-freedom of a system 
without damping. The dynamic equilibrium equation at time tn is given by: 
 

 nnn fkuum =+ɺɺ  EQ.4.1.7.14 

 

where m and k are respectively the nodal mass and stiffness. nf  is the external force at time tn. Rewriting the 

central difference time integration equations from EQ. 4.1.7.1, you obtain: 
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Substituting these equations into EQ. 4.1.7.14, it yields: 
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 EQ.4.1.7.17 

 
This equation can be written as EQ. 4.1.7.2.  Then the amplification matrix takes the expression: 
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where 
m

k=ω  is the angular frequency of the considered mode. 

 

Comparing with EQ. 4.1.7.3, you have, 
2

t
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1
∆ω−=  and 1A 2 = . Stability is then given by: 
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The right inequality is always true if ω ≠0. For, the particular case of ω =0, the scheme is unstable. However, 

the analytical solution for a system with ω =0 leads to an unbounded solution. The left inequality implies:  

ω
2<∆t    EQ.4.1.7.20 

 

4.1.7.2 Numerical stability with viscous damping - velocities at 
time steps 
 
The dynamic equilibrium equation at time step n is written as: 
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Using the equations: 
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Results in:  
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For the velocity, write the equations: 
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to obtain: 
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Substituting these equations into EQ.4.1.7.21, the recurring continuation equation on the displacement is written 
in the form: 
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The equation can be rearranged to obtain the expression of the amplification matrix: 
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Stability is given by the set of conditions from EQ.4.1.7.13: 
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The second expression is always verified for c > 0. It is the same for the right inequality of the first expression. 
The left inequality of the first expression leads to the condition on the time step: 
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You find the same condition as in the undamped case, which echoes a conclusion given in [55]. You may yet 
remark that damping has changed the strict inequality into a large inequality, preventing from weak instability 
due to a double eigen value of modulus unity. 
 
It is important to note that the relation EQ.4.1.7.29 is obtained by using the expression EQ.4.1.7.25 to compute 

nodal velocities at time steps. However, in an explicit scheme generally the mid-step velocities  2
1

+n
uɺ  and 2

1−n
uɺ  

are used. This will be studied in the next section. 
 

4.1.7.3 Numerical stability with viscous damping - velocities at 
mid-steps  
Considering the case in which damping effects cannot be neglected, you still would like to deal with decoupled 
equilibrium equations to be able to use essentially the same computational procedure. Except for the case of full 
modal projection which is a very expensive technique and practically unused, the damping matrix [ ]C  is not 

diagonal, contrary to [ ]M . The computation of the viscous forces with the exact velocity given by the 

integration algorithm requires the matrix [ ] [ ]CM
2

t∆+  to be inverted, which can harm the numerical 

performances. You therefore often compute the viscous forces using the velocities at the preceding mid-step, 
which are explicit. This leads to an equilibrium at step n in the form: 
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−

2

1

.ɺɺɺ        EQ.4.1.7.30 

 
The integration algorithm immediately yields: 
  

( )12

1 1 −−
−

∆
= nn

n
uu

t
uɺ    EQ.4.1.7.31 

 
The recurring continuation becomes: 

( ) nnnn
nnn

fkuuu
t

c

t

uuu
m =+−

∆
+

∆
+− −

−+
1

2

11 2
   EQ.4.1.7.32 

 
As above, you obtain the amplification matrix: 

[ ]
















 ∆+−∆−∆−
=

01

12
A

22

m

tc

m

tc
tω

   EQ.4.1.7.33 

 

You have in this case 
m2

tc

2

t
1A

22

1
∆−∆ω−=  and 

m

tc
1A 2

∆−= . 
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Stability is again given by the set of conditions EQ.4.1.7.13: 

m

tc

m

tct

m

tc

2
1

22
1

2
1

22 ∆−≤∆−∆−≤∆+− ω
 EQ.4.1.7.34 

 111 <∆−≤−
m

tc
 

 
Right inequalities are always verified in both preceding expressions. Left inequalities now lead to two conditions 
on the time step: 
 

 
c

m
tm

c

m

c

t
2

,
4

2

2
2

2

≤∆
++−

≤∆
ω

ω
 EQ.4.1.7.35 

 
Therefore, the critical time step depends not only to ω  but also to the mass and the damping. However, the 
critical time step depends only to ω  when using the exact velocities to compute the viscous forces as described 
in the previous section. 
 

4.1.7.4 Numerical stability with Rayleigh damping 
The linearized equations of equilibrium governing the dynamic response of a finite element system can derived 
from the equations of motion given in Sections 3.5 and 3.6: 
 

{ } [ ]{ } [ ]{ } { }FUKUCUM =++ ɺɺɺ][  EQ.4.1.7.36 

 
In the case of direct step-by-step time integration, it is necessary to evaluate the damping matrix [C] explicitly. 
The Rayleigh damping method assumes that the matrix [C] is computed by the following equation: 
 

[ ] [ ] [ ]KMC βα +=  EQ.4.1.7.37 

 
where [ ]C  is the viscous damping matrix of the system, 

 [ ]M  is the mass matrix, 

 [ ]K  is the stiffness matrix. 

 
As described in the preceding sections, the computation of the viscous forces by using velocities at time steps 
leads to obtain a non-diagonal matrix [C] which should be inverted in the resolution procedure. To avoid the 
high cost operations, generally the simplifications are made to obtain a diagonal matrix. Substituting the 

Rayleigh equation into EQ.4.1.7.36 and using the mid-step velocities for [ ]Kβ  terms and at step nodal 

velocities for [ ]Mα  terms, the following expression is obtained: 

[ ]{ } [ ]{ } [ ] [ ]{ } { }nn
n

nn fuKuKuMuM =+








++
−

2

1

ɺɺɺɺ βα     EQ.4.1.7.38 

Studying the equilibrium of a node to obtain a one dimensional equation of motion, write: 
 
 fkuucum =++ ɺɺɺ         EQ.4.1.7.39 
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where m is the modal mass, 

 c is the associated modal damping, 

 k is the nodal stiffness. 
 
This leads to the following recurring continuation on the displacement: 

 ( ) ( ) nnnnnn
nnn

fkuuu
t

k
uu

t

m

t

uuu
m =+−

∆
+−

∆
+

∆
+− −−+

−+
111

2

11

2

2 βα
 EQ.4.1.7.40 

 
The amplification matrix is then: 

 [ ]
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2
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tt

α

βωα

α
βωω

 EQ.4.1.7.41 

 

In this case, 

2
1

22
1

222

1 t

tt

A
∆+

∆−∆−
= α

βωω

 and 

2

t
1

t
2

t
1

A

2

2 ∆α+

∆βω−∆α−
= .  

 
Stability is obtained as before by means of the set of conditions from EQ.4.1.7.13: 
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t
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α
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 EQ.4.1.7.42 

 
This again yields two conditions on the time step, coming from the left inequalities in both expressions: 
 

 2

22 2
,

4

βωω
ωββω

≤∆
++−

≤∆ tt  EQ.4.1.7.43 

 
It is equivalent to consider only the [ ]Kβ  contribution in the damping for the computation of the time step, 

which appears to be logical since the [ ]Mα  contribution is used with the exact velocity. It is advantageous to 

separate the two contributions, restrictions of the time step then becoming lighter. It can be shown that for the 
complete treatment of the Rayleigh damping using mid-step velocities, the stability conditions can be given by 
the following expressions: 

 
( )

2

2222 2
,

4

βωαω
ωβωαβωα

+
≤∆

+++−−
≤∆ tt  EQ.4.1.7.44 



RADIOSS THEORY Version 2017  DYNAMIC ANALYSIS 
 

01-Jan-2017 17

m k 

4.1.7.5 Example: Critical time step for a mass-
spring system 

Consider a free mass-spring system without damping.  
The governing differential equation can be written as: 

0=+ KXXM ɺɺ      (a) 

The element matrix expressions are given as: 

[ ] 







=

10

01
mM ;  [ ] 









−
−

=
11

11
kK   

The general solution is assumed in the form of: 

[ ]Ψ−= ItCosX )( αω     (b) 

where the angular frequency ω  and the phase angle α  are common for all Xi. α  and iΨ  are the constants of 

integration to be determined from the initial conditions of the motion and ω  is a characteristic value (eigen 
value) of the system. Substituting (b) into (a) yields: 

( ) 0)(2 =−Ψ− αωω tCosMK    (c) 

The consistency of (c) for 0)( ≠−Ψ αωtCos  requires that: 

( ) 0det 2 =− MK ω  =>  
m

k22 =ω   (d) 

Assuming the following numerical values m = 1 and k =10, you have 472136.4
2 ==
m

kω .  The critical 

time step of the system is given by EQ. 4.1.7.20: 
 

4472.0
472136.4

22 ≤∆⇒≤∆⇒≤∆ ttt
ω

 

 

4.1.7.6 Example: Critical time step for dropping body example 
A dropping body is studied in Example 4.1.5 with analytical and numerical approaches. As shown in Figure 
4.1.3 the numerical results are closed to the analytical solution if you use a step-by-step time discretization 
method with a constant time step t∆ =0.1. This value is less than the critical time step obtained by: 

max

2

ω
=∆ crt  

which may be computed as: 

4472.0
472136.4

2
20 =∆⇒=∆⇒== crcr tt

m

kω  

m m k 
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m k m k 

Therefore, the used time step in the Example 4.1.5 ensures the stability of the numerical scheme as it is less than 
the critical value. Now using the values higher than or equal to the critical time step, the solution diverges 
towards the infinity as shown in Figure 4.1.5. 
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It is worthwhile to comment that in a general explicit 
finite element program as RADIOSS, the critical time 
step is computed for an entire element (two nodal 
masses and stiffness for spring element). In case of 
dropping body example, the mass-spring system can be 
compared by analogy to a two-node mass-spring 
system where the global stiffness is twice softer. The 
critical time step is then computed using the nodal time 
step of the entire element (refer to the following sections for more details on the computation of nodal time step). 

4.1.8 Stability by Courant condition 
RADIOSS uses elements with a lumped mass approach. This reduces computational time considerably as no 
matrix inversion is necessary to compute accelerations. 

The integration scheme used by RADIOSS is based on the central difference integration scheme which is 
conditionally stable, i.e. the time step must be small enough to assure that the solution does not grow 
boundlessly.  

The stability condition is given in the last sections. For a system without damping, it can be written in a closed 
form:  

max

2

ω
≤∆t    EQ. 4.1.8.1 

 

 

Figure 4.1.5 Numerical instability for Example 4.1.7.6 using over critical time steps 
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where maxω
 is the highest angular frequency in the system:  

( ) 0det 2 =− MK ω    EQ. 4.1.8.2 

where K and M are respectively the stiffness and the mass matrices of the system.  

The time step restriction given by EQ. 4.1.8.1 was derived considering a linear system (see Section 4.1.7), but 
the result is also applicable to nonlinear analysis since on a given step the resolution is linear. However, in 
nonlinear analysis the stiffness properties change during the response calculation. These changes in the material 

and the geometry influence the value of maxω
 and in this way the critical value of the time step. 

The above point can be easily pointed out by using a nonlinear spring with increasing stiffness in Example 4.1.5. 
It can be shown that the critical time step decreases when the spring becomes stiffer. Therefore, if a constant 
time step close to the initial critical value is considered, a significant solution error is accumulated over steps 
when the explicit central difference method is used.  

Another consideration in the time integration stability concerns the type of problem which is analyzed. For 
example in the analysis of wave propagation, a large number of frequencies are excited in the system. That is not 
always the case of structural dynamic problems. In a wave shock propagation problem, the time step must be 
small enough in order to excite all frequencies in the finite element mesh. This requires short time step so that 
the shock wave does not miss any node when traveling through the mesh. It follows that the time step should be 
limited by the following relation: 

c

l
t c≤∆    EQ.4.1.8.3 

where: 

lc is the characteristic element length, representing the 
shortest road for a wave arriving on a node to cross the 
element, 

c is the speed of sound in the material, t∆  is the time 
step.  

The condition EQ. 4.1.8.3 gives a severe time step 

restriction with respect to stability time step i.e. ω
2<∆t

. 
It can easily be shown that for a simple case of a bar 
element, the two expressions EQ. 4.1.8.3 and EQ. 4.1.8.1 
are equivalent.  

 

If a uniform linear-displacement bar element is 
considered, (Figure 4.1.7), and a lumped mass formulation at the nodes is used, the highest frequency of this 
element can be obtained by a resolution of an eigen value problem:  

[ ]{ } [ ]{ }XMXK 2ω=    EQ. 4.1.8.4 

[ ] [ ]( ) 0det 2 =− MK ω    EQ. 4.1.8.5 

For a lumped mass bar, you have: 

[ ] 








−
−

=
11

11
kK    EQ. 4.1.8.6 

l 

1 2 

Figure 4.1.6 Bar element 
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[ ] 







=

10

01
mM    EQ. 4.1.8.7 

where m and k are respectively the nodal mass and stiffness of the bar: 

l

EA
k =  ; 

2

lA
m

ρ=    EQ. 4.1.8.8 

Equation 4.1.8.5 yields: 

( ) 0222 =−− kmk ω    EQ. 4.1.8.9 

then: 

m

k2=ω   EQ. 4.1.8.10 

which can be simplified with EQ. 4.1.8.8 to obtain: 

l

cE

l

22 ==
ρ

ω   EQ.4.1.8.11 

where c is the speed of sound in the material and its expression is given as: 

ρ
E

c =
   EQ. 4.1.8.12 

with ρ  the material density and E the Young’s modulus. Combining EQ. 4.1.8.11 and EQ. 4.1.8.1, you obtain: 

c

l
t ≤∆

   EQ. 4.1.8.13 

Figure 4.1.7  Element Characteristic Lengths 
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This relation is that of EQ. 4.1.8.3 and shows that the critical time step value in the explicit time integration of 
dynamic equation of motion can be carried out by the interpretation of shock wave propagation in the material. 
This is shown for the first time by Courant et al. in 1928 [56]. In spite of their works are limited to simple cases, 
the same procedure can be used for different kinds of finite elements. The characteristic lengths of the elements 
are found and EQ. 4.1.8.3 is written for all elements to find the most critical time step over a mesh. Regarding to 
the type (shape) of element, the expression of characteristic length is different. Figure 4.1.7 shows some typical 
cases for elements with one integration point. 

4.1.9 Time Step Control in RADIOSS 
The time incrementation in RADIOSS is fully automatic and a priori requires no user intervention. The step 
used for time integration (or moving forward in time) can be calculated using two different methods. The method 
used depends on the type of simulation being performed.  

The two time step methods are:  

• the element time step,  

• the nodal time step.  

The time step used by the solver is the largest possible time step, as determined by the Courant condition that 
will maintain stability. If the default large strain formulation is used, the time step is computed at each cycle. 
Large element deformation can give a large time step decrease. If the deformation is too large, negative volumes 
can result, which make it impossible to invert the Jacobian matrix and to integrate the stress over the volume. If 
the small strain formulation is used, assuming a constant Jacobian matrix during time and also a constant 
volume, all spatial variables are defined at t = 0. This is either the beginning of the analysis or the time at which 
the small strain formulation is initiated. If the sound speed is constant, the time step thus becomes constant. 
Using this formulation, the time step has no effect on the computation since the initial volume is used. 

4.1.9.1 Element time step control  

The stable element time step was detailed in Section 4.1.8 and is restated as:  








=∆
c

l
t Elementsmin    EQ. 4.1.9.1 

where: 

• l is the element characteristic length,  

• c is the speed of sound in the material.  

 

This is the default setting.  

The element time step is computed at the same time as the internal forces. The characteristic length and the 
sound speed are computed for each element in every cycle. 

The computed time step is compared to a minimum time step value and a scale factor is applied to ensure a 
conservative bound. Different minimum time step values can be given to different element types by using the 
option: /DT/Keyword where Keyword is defined in the user manual as the element type.  

If deformation is large enough for the time step to reach the minimum defined value, three options are possible 
under the user's control:  

• Stop the analysis when the minimum time step value is reached. This is the default for brick and 
quadrilateral elements.  

• Delete the element(s) defining the time step. This is the default for shell elements.  

• Implement small strain formulation using a constant time step. This only works for shell and brick 
elements.  

These options are defined using a third keyword: STOP, DEL, CST, AMS or SET.  
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4.1.9.2 Nodal time step control  

The nodal time step is calculated after the computation of all the internal forces at each node using the following 
equation:  

k

m
t Nodes

2
min=∆    EQ. 4.1.9.2 

where m is the nodal mass and k an equivalent nodal stiffness.  

The nodal stiffness is one half of eigen value from element stiffness matrix; for a truss element this value is 
equal to the diagonal term of the stiffness matrix. It is computed from the accumulation of element and interface 
stiffness’. These stiffness’ are obtained during internal force computation.  

For a regular mesh, the element time step and nodal time step conditions are identical. For example, take a truss 
element, Figure 4.5.2. Using an element time step condition:  

ρ
E

l

c

l
telement ==∆    EQ. 4.1.9.3 

The nodal time step condition is written as:  

k

m
tnodal

2=∆    EQ. 4.1.9.4 

with  Alm ρ
2

1=  and  
l

EA
k =    EQ. 4.1.9.5 

Therefore:  

elementnodal t
c

l

E

l

l
EA

Al
t ∆====∆

ρ

ρ
   EQ. 4.1.9.6 

 

To select the nodal time step when running RADIOSS the option /DT/NODA has to be used.  

As for the element time step, minimum time step and scale factors are required. The default value for the scale 
factor is 0.9. If the minimum time step is reached, the analysis can either be stopped or a mass scaling 
formulation can be applied. In the latter case, mass is added to the affected nodes so that the time step remains 
constant at the minimum value. This option can be enabled using the same third keyword as used in the element 
time step control. It must be checked that added masses do not affect the accuracy of results. If one uses the 
nodal time step, the element time step is ignored.  

 

4.1.9.3 Interface time step control  

Finally, the time step is influenced by existence of interfaces. The interface time step control depends on the type 
of interface being used.  

For the interfaces in which the contact conditions are defined by applying kinematic conditions, no time step 
restriction is required. This is the case of interface type 2 of RADIOSS.  

In addition, for the interfaces types 3, 4, 5, and 8 in RADIOSS a small stiffness is used. Therefore, the interfaces 
are stable if a time step scale factor less than or equal to 0.9 is used.  
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Types 7, 10 and 11 interfaces use a variable stiffness and if this stiffness is not small compared to the element 
stiffness, a stability condition must be adhered to.  

For interfaces 3, 4, 5, 7, 8, and 10, there are three possibilities that can be selected shown in Table 4.1.1. 

  

Table 4.1.1 - Interface Time Step Cases  

Default (element) time step without interfaces types 7, 
10 or 11  

Element time step is computed and a scaling factor of 
0.9 (default) is applied.  

Option /DT/NODA is used with or without interface 
types 7 and/or 10, 11  

Nodal time step is computed and a scaling factor of 0.9 
(default) is applied.  

Default time step with interface types 7 or 10, 11 
Nodal and element time steps are computed and the 
smallest is used.  

If the deletion option is applied with the /DT/INTER/DEL interface time step control, the node controlling the 
minimum time step is deleted from the interface.  

Mass scaling, where mass is added to an interface node, can be enabled using the option: /DT/INTER/CST  

4.1.10 Time step control limitations 
Many of the time step control options influence the solution results. The solution of the nonlinear dynamic 
response of a finite element system accurate is the numerical model correctly represents the physical model. The 
critical time step given for finite element system is determined by a theoretical approach in which the highest 
frequency of the discretized system controls this value. Therefore, the time step limitations are related to the 
model and cannot be changed without incidence on the quality of results.  

Using the "DEL" option can significantly alter the model, since elements and nodes are removed without 
replacement. In fact, mass and/or volume is lost. Using either /DT/NODA/CST or /DT/INTER/CST will add 
mass to the model to allow mathematical solution. The added mass will increase the kinetic energy. This should 
be checked by the user to see if there is a significant effect. Switching to a small strain option using brick or shell 
elements also introduces errors as it was seen in Section 2.12.  

Generally, in the study of the nonlinear dynamic response of a system, three physical laws have to be respected: 

• Conservation of mass, 

• Conservation of energy, 

• Conservation of momentum dynamic equilibrium. 

The last one is generally respected as the equation of motion is resolved at each resolution cycle. However, in the 
case of adding masses especially when using /DT/NODA/CST option, it is useful to verify the momentum 
variation. The two other conservation laws are not explicitly satisfied. They should be checked a posteriori after 
computation to ensure the validity of the numerical model with respect to the physical problem. 

4.1.10.1 Time step example  
Explicit scheme stability condition 

0=+ KXXM ɺɺ    EQ. 4.1.10.1 

KXMX 1−=ɺɺ    EQ. 4.1.10.2 

n
nn

XdtXX ɺɺɺɺ +=
−+

2

1

2

1    EQ. 4.1.10.3 

2

11 −− +=
n

nn XdtXX ɺ    EQ. 4.1.10.4 
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EQ. 4.1.10.2 and n EQ. 4.1.10.3 are added: 

n
nn

KXdtMXX 1

2

1

2

1
−

−+
+= ɺɺ    EQ. 4.1.10.5 

The following equation is obtained: 

1
1

1
2

1

2

1 −
−

−−−
+= n

nn
KXdtMXX ɺɺ    EQ. 4.1.10.6 

When EQ. 4.1.10.6 is subtracted from EQ. 4.1.10.5, and EQ. 4.1.10.4 is used: 

1
2

1

2

1

2

1 −−−+
−=

nnn
XXAX ɺɺ    EQ. 4.1.10.7 

 

Where KMdtIA 122 −+=  

For non divergence of EQ. 4.1.10.7: 

=> λ : largest eigen value of A-I is smaller than 1 

=> ( ) 0det 12 =++ − KMdtIIλ  

=> ( )( )( ) 0/1det 12 =++ − KMdtI λ  

=> >22dt  largest eigen value of KM 1−  

=> 22dt < smallest eigen value of MK 12 −  

Application  
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Interface 

Interfaces have stiffness but no mass: 0=edt  

Solution 1: (interface type 3, 4, 5) 

kinterface << kelements 

Solution 2: nodal time step (interface type 7 and type 10):  

k

m
dtn

2=  ∑ ∑+= elementsinterface kkk  

Kinematic time step (interface type 7): 

dt < (gap-pene)/2 V  

V: impact speed 

 

4.2 Large Scale Eigen value Computation 
The numerical solution of large scale algebraic eigen value problems is now available thanks to new methods 
and software. A class of methods called Krylov subspace projection methods is used. The well known Lanczos 
method is the first one. The Arnoldi method is a generalization of Lanczos method applied to the non-symmetric 
case. A variant of Arnoldi-Lonczos scheme called the Implicitly Restarted Arnoldi Method [97] is a part of 
public domain software package called ARPACK which is integrated in RADIOSS. Restarting is introduced as a 
way to overcome intractable storage and computational requirements in the original Arnoldi method. Implicit 
restarting is a variant of restarting which may be considered as a truncated form of the powerful implicitly 
shifted QR technique that is suitable for large scale problems. It provides a mean to approximate a few eigen 
values with user specified properties in space proportional to the number of eigen values required. The details of 
the method are not explained here. The reader is invited to consult [97] for a deep lecture. 

 

4.3 Combining Modal Reduction on sub-domain and Direct 
Integration Methods 

A domain decomposition method allowing the combination of nonlinear sub-domains with linear modal sub-
domains has been proposed in [107]. With this technique, the displacement field in the linear sub-domains is 
projected on a local basis of reduction modes calculated on the detailed geometry and the kinematic continuity 
relations are written at the interface in order to recombine the physical kinematic quantities of reduced sub-
domains locally. The method yields promising save of computing time in industrial applications. However, the 
use of modal projection is limited to linear sub-domains. In the case of overall rigid-body motion with small 
local vibrations, the geometrical nonlinearity of sub-domains must be taken into account. Therefore, the 
projection cannot be used directly even thought the global displacements may still be described by a small 
number of unknowns; for example six variables to express motion of local frame plus a set of modal coordinates 
in this frame. This approach is used in the case of implicit framework in [108]. In the case of direct integration 
with an explicit scheme an efficient approach is presented in [109]. One of the main problems is to determine the 
stability conditions for the explicit integration scheme when the classical rotation parameters as Euler angles or 
spin vectors are used. A new set of parameters, based on the so-called ‘frame-mass’ concept is introduced to 
describe the global rigid body motion. The position and the orientation of the local frame are given by four 
points where the distances between the points are kept constant during the motion. In this way, only the 
displacement type d.o.f. is dealt and the equations of motion are derived to satisfy perfectly the stability 
conditions. This approach, which was integrated in RADIOSS V5, will be presented briefly here. The reader is 
invited to consult [109] for a detailed view. 
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4.3.1 Linear modal reduction 
A modal reduction basis is defined on one or more sub-domains of the decomposition.  The definition of this 
basis is completely arbitrary.  Any combination of eigen modes and static corrections can be used.  All these 
modes are orthogonalized with respect to the finite element mass matrix in order for the projected mass matrix to 
be diagonal and suitable for an explicit solver. 

Considering the case of a structure divided into two sub-domains, assume that modal reduction is used for linear 
Sub-domain 1.  Thus, the displacement field of this sub-domain is projected onto the reduction vectors: 

( ) ( ) ( )ttt
n

ii 11
1

111 ΦΦU αα ==∑    EQ. 4.3.1.1 

with 1U  vector of discretized displacements in Sub-domain 1, 1α  vector of modal participations. This naturally 

yields:  

111

111

ΦU

ΦU

α
α
ɺɺɺɺ

ɺɺ

=

=
   EQ. 4.3.1.2 

The number of modal unknowns 1α  chosen is much smaller than the original number of degrees of freedom of 

Sub-domain 1. 

In order to obtain the new coupled system, the dynamic equilibrium of sub-domain 1 must be projected onto the 
reduction basis and the velocities involved in the kinematic relations must be expressed in terms of the modal 
coordinates.  Thus, write the new matrix system for a single time scale as:  
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   EQ. 4.3.1.3 

where 

111

1111

11111

1111

ΦCĈ

ΦKΦK̂

αK̂FΦF̂

ΦMΦM̂

=

=

−=

=

T

ext
T

T

 

The structure of this system is strictly identical to that which existed before reduction.  Therefore, use exactly the 
same resolution process and apply the multi-time-step algorithm.  

The time step for a reduced sub-domain is deduced from the highest eigen frequency of the projected system in 
order to preserve the stability of the explicit time integration.  This time step is often larger than that given by the 
Courant condition with the finite element model before reduction.  

 

4.3.2 Modal reduction with finite overall rotations 
Since large rotations are highly nonlinear [50], the displacement field in a sub-domain undergoing finite 
rotations cannot be expressed as a linear combination of constant modes.  However, the rigid contribution to the 
displacement field creates no strain.  In the case of small strains and linear behavior, the local vibrating system 
can still be projected onto a basis of local reduction modes.  Then, take into account the rotation matrix from the 
initial global coordinate system to the local coordinate system and its time derivatives.  A classical 
parameterization of this rotation, for example, Euler angles, would introduce nonlinear terms involving 
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velocities.  Since these quantities, in the central difference scheme, are implicit, this would require internal 
iterations in order to solve the equilibrium problem, a situation you clearly want to reduce the computation time 
due to the reduction. 

Classically, the displacement field of a rotating and vibrating sub-domain is decomposed into a finite rigid-body 
contribution and a small-amplitude vibratory contribution measured in a local frame.  The large rigid motion is 
represented using the so-called “four-mass” approach [109]. 

Four points ( )CBAO ,,,  in space are arbitrarily chosen to represent the position of a local frame attached to the 

sub-domain.  In order to simplify the local equations, choose these points so that they constitute an ortho-normal 
frame. 

Note: The four points defining the local frame do not have to coincide with nodes of the mesh. 

4.3.2.1 Decomposition of displacement field  
The global displacements of these four points are the unknowns describing the rigid motion of the sub-domain.  
These are classical displacement-type parameters.  The relative distances between these points are kept constant 
during the dynamic calculation through external links.  This enables us to express the total continuous 
displacement field of the sub-domain as follows:  

( ) LELOCBA ZYXZYX PuuPuu1uuuu +=+−−−+++=    EQ. 4.3.2.1 

where  ZYX ,,  are the coordinates in the local frame [ ]CBAO ,,, , 

P is the rotation matrix expressing the transformation from the local to the global coordinates: since 

( )OCOBOA ,,  are unit vectors, [ ]OCOBOA ;;P = . 

In order to express the dynamic equilibrium, EQ. 4.3.1.4 must be derived with respect to time to yield velocities 
and accelerations. 

( )
( ) LLLOCBA

LLOCBA

ZYXZYX

ZYXZYX

uP2uPuPu1uuuu

uPuPu1uuuu

ɺɺɺɺɺɺɺɺɺɺɺɺɺɺɺɺ

ɺɺɺɺɺɺɺ

+++−−−+++=

++−−−+++=
   EQ. 4.3.2.2 

The time derivatives of the rotation matrix are given by: 

[ ]
[ ]OCOBOA

OCOBOA

uu;uu;uuP

uu;uu;uuP

ɺɺɺɺɺɺɺɺɺɺɺɺɺɺ

ɺɺɺɺɺɺɺ

−−−=

−−−=
   EQ. 4.3.2.3 

Thus, the fields in EQ. 4.3.2.2 have the following expression:  

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )[ ]
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X

L

L

O
Z

L
Y

L
X

LC
Z

LB
Y

LA
X

L

ZYXZYX

ZYXZYX

uP2uP

uuuu1uuuuuuu

uP

uuuu1uuuuuuu

ɺɺɺɺ

ɺɺɺɺɺɺɺɺɺɺ

ɺ
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+−+−+−++++++=

+
+−+−+−++++++=

EQ. 4.3.2.4 

where 
Z

L
Y

L
X

L u,u,u  are the components of the local displacement in the local frame. The assumption of small 

perturbations in the local frame enables us to consider that the rigid and the deformed configurations are the 

same, that is, you can neglect 
Z

L
Y

L
X

L u,u,u  compared to the local coordinates, ZYX ,, .  Thus, you get 

simplified expressions of the velocity and acceleration fields: 
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( )
( ) LLOCBA

LOCBA

ZYXZYX

ZYXZYX

uP2uPu1uuuu

uPu1uuuu

ɺɺɺɺɺɺɺɺɺɺɺɺɺɺ

ɺɺɺɺɺɺ

++−−−+++=

+−−−+++=

   EQ. 4.3.2.5 

To express the weak form of the dynamic equilibrium, you also need the variation uδ  of the displacement field: 

( ) LLOCBA ZYX1ZYX uPPuuuuuu δ+δ+δ−−−+δ+δ+δ=δ    EQ. 4.3.2.6 

where [ ]OCOBOA ;; uuuuuuP δ−δδ−δδ−δ=δ  

 

Again, the same assumption as above allows us to simplify this expression: 

( ) LOCBA ZYX1ZYX uPuuuuu δ+δ−−−+δ+δ+δ=δ    EQ. 4.3.2.7 

 

4.3.2.2 Local reduced dynamic system  
The local dynamic equilibrium of the sub-domain is given by: 

( ) 0int =− ufuɺɺρ    EQ.4.3.2.8 

The principle of virtual work yields a weak form of this equilibrium, taking into account, Dirichlet-type 
boundary conditions: 

( ) 0ΩufuΩuu int =− ∫∫
ΩΩ

dd TT δρδ ɺɺ    EQ.4.3.2.9 

uδ∀  verifies the kinematic boundary conditions 

Ω  is the volume of the sub-domain. 

To introduce EQ. 4.3.1.4 into this weak form of the equilibrium, you must express with the new parameterization 
the virtual works of both the internal and external forces and the virtual work, due to the rigid links among the 
points defining the local frame. 

The internal forces can be calculated from the local part of the displacement, using EQ. 4.3.2.1 and taking into 

account the rigid links, for example, the fact that displacement Eu  creates no strain;  

( ) ( ) ( )[ ]LLLLLintint div uσPuPfuf ==
   EQ.4.3.2.10 

Where, index L expresses that the coordinates and the spatial derivatives are taken in the local frame. 

The virtual work of the internal forces is then: 

( )[ ]∫
Ω

= ΩuσPuWint ddiv LLL
Tδδ    EQ.4.3.2.11 

The integration by parts in the local frame introduces external surface forcesextf : 

( ) ( ) ( )

( ) ( ) ∫∫

∫∫

ΓΩ

ΓΩ

δ+δ−=

δ+δ−=δ

SfuΩuPεuσ

ΩnuPσuΩuPεuσW

dd:

d.d:

ext
TT

LLL

LLL
TT

LLLint

   EQ.4.3.2.12 
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Where Γ  is the boundary of Ω , Ln  is the normal to Γ  expressed in the local frame. 

To compute forces associated to the rigid links, first, new Lagrange multipliers are introduced to express the 
energy of a link: 

( )
( )
∑

>
∈

Λ=
IJ

CBAOJI
JIIJlinks uuW

2,,,),(
IJ ,D    EQ.4.3.2.13 

Where  ( ) ( ) 0000 xxuxuxD JIJJIIIJ −−+−+=  and 0x I  are the initial coordinates of point I and the 

rigid link between points I and J is given by: ( ) 0u,uD =JIIJ . 

 

Then, the differentiation of this energy is used to obtain the virtual work to be introduced into the weak form of 
the equilibrium: 

( )
( )

( )
( )( )

∑ ∑∑
∈

≠
∈
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CBAOI

IJ
CBAOJ I
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jIIJIJlinks u
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,,, ,,,,,,),(

,D
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2

δδδδ   EQ.4.3.2.14 

( )C,B,A,OII ∈δ∀ u , 

Note: The quantity 
( )

( )
IJlinks

IJ
CBAOJ I

JIIJ
IJ F

u

u,uD

,,,

=
∂

∂Λ∑
≠

∈

 can be viewed as the resisting force applied to point 

I to preserve the distances from this point to the other points of the local frame. 

 

4.3.2.3 Weak form of equilibrium 
Now, let us express the displacement field using EQ.4.3.2.1 and the local field projected on a Ritz basis: 
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   EQ.4.3.2.15 

where i
i
X Xeφ = , i

i
Y Yeφ = , i

i
Z Zeφ = , ( ) i

i
ZYX ZYX e1φ1 −−−=−−− , ( )321 e,e,e  is a basis of the 

global frame, { }i
Lφ  is a basis of local Ritz vectors obtained, for example, by finite element discretization or by 

modal analysis,Û  is the vector of the discrete unknowns:  
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Û  and [ ]i
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PΦ  is the projection basis: { } { } { } { } { }[ ] [ ]LE
i
L

i
ZYX

i
Z

i
Y

i
XP PΦ,ΦPφ,φ,φ,φ,φΦ 1 == −−− . 
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EQ.4.3.2.5 and EQ.4.3.2.7 yield: 

ÛΦu

ÛGÛΦu

ÛΦu

δδ P

P

P

=






+=

=
ɺɺɺ

ɺɺ

ɺ
ɺ

   EQ.4.3.2.16 

where 




 ÛG
ɺ

 is the gyroscopic contribution to the acceleration, given by: 

[ ] [ ] [ ] [ ]( ) LL
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ɺɺɺɺɺ
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The final expression of the complete weak form of the dynamic equilibrium is obtained as: 

( ) ( ) ( ) ( )
( ) ( ) ( )∫

∫∫∫
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ΩΩΩ
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 EQ.4.3.2.17 

where  { }i
LL ϕ=Φ , 

 { } { } { } { } { }[ ] [ ]LE
Ti

L
i

ZYX
Ti

Z
Ti

Y
Ti

X
T

P PPPPP ΦΦ== −−− ,,,,, 1 ϕϕϕϕϕψ  

D  is the vector formed by the 6 relations preserving the relative distances of points ( )CBAO ,,, , 

Λ  is the vector of the Lagrange multipliers corresponding to each rigid link, 

 linksF  is the vector of the link forces given by Equation (31). 

 

EQ. 4.3.2.17 can be rewritten using classical matrix and vector operators obtained by finite element 
discretization: 

( ) ( ) Pext
T

Elinks
T

EE
T

LL
T

gyr
T

P
T FÛÛ,FÛÛDÛKÛÛFÛÛMÛ δδδδδδ =Λ−Λ−+





+ ɺɺɺ

   EQ.4.3.2.18 

where P
T

PP ΦMΦM = , with M being the classical mass matrix of sub-domain and PΦ  being the 

projection matrix consisting of vectors of PΦ  discretized on the nodes of the mesh: 

( ) Ω




Φ=





 ∫

Ω

dUGUF T
Pgyr ρɺɺ ˆˆ     EQ.4.3.2.19 

L
T

PL ΦΨ= KK , with K being the sub-domain’s local stiffness matrix and PΨ  and LΦ  deduced (as was 

LΦ ) from PΨ , LΦ   and the mesh, ext
T

PPext FF Φ= , with extF  being the classical vector of the external forces 

assembled on the sub-domain. 

Now, you are able to reduce the number of unknowns on the sub-domain drastically by choosing as the Ritz 
vectors, instead of classical finite element shape functions, an appropriate (and small) family of local reduction 
vectors.  The modal vibration problem is purely local and guidelines found in the literature for the proper choice 
of the projection basis apply here. 
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Note 1 

As far as inertia coupling with local vibration and overall large motion is concerned, two separate contributions 
must be considered. The first contribution appears in the projected mass matrix, which as now the following 
form: 









=

VC

T
E

P
MM

MM
M C    EQ.4.3.2.20 

where ME is the constant mass matrix corresponding only to the global displacement field given by 

( ) OCBA u1uuu ɺɺɺɺ ZYXZYX −−−+++ , MV  is the constant mass matrix corresponding to the local 

vibration given by uL, MC is a coupling matrix, variable with overall rotation, arising from the interaction 

between the local vibratory acceleration field expressed in the global frame LuPɺɺ  and the overall virtual 

displacement field ( ) OCBA 1 uZYXuZuYuX δδδδ −−−+++ ; T

C
M  naturally comes from the symmetric 

interaction between virtual local displacement field and the overall acceleration field.  

The second contribution to the inertia coupling is the gyroscopic forces. 

 

Note 2 

In RADIOSS a special procedure is used to linearize the rigid links. The method is fully explained in [109].  

 

Note 3 

The rigid body motion component of the displacement increment is computed in unconditionally stable way by 
the use of Lagrange Multiplier to impose the rigid links. The deforming part is generated by the local vibration 
modes retained in the reduction basis. Therefore, you can conclude that the stability condition is the same as that 
given by the local vibrating system. The critical time step is constant throughout the calculation and can be 
derived from the highest eigen frequency of the local reduced stiffness matrix with respect to the local reduced 
mass matrix. 

The highest eigen frequency maxf  is given by the system: 

VMVK L
T
LL

T
L ΦΦ=ΦΦ 2ω    EQ.4.3.2.21 

where { }i
LL ϕ=Φ and 

π
ω
2

f = . 

Having determined maxf , the maximum time step which can be used on the reduced sub-domain while ensuring 

the stability of the time integration is: 

max
max

1

f
t

π
=∆    EQ.4.3.2.22 

 

 


