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5.0 ELEMENT LIBRARY 

RADIOSS element library contains elements for one, two or three dimensional problems. Some new elements 
have been developed and implemented in recent versions. Most of them use the assumed strain method to avoid 
some locking problems. For the elements using reduced integration schema, the physical stabilization method is 
used to control efficiently the hourglass deformations. Another point in these new elements is the use of co-
rotational coordinate system. For the new solid elements, as the assumed strains are often defined in the specific 
directions, the use of global system combined with Jaumman's stress derivation contributes to commutative error 
especially when solid undergoes large shear strains. 
 
The RADIOSS finite element library can be classified into the following categories of elements: 
 

• Solid elements : 8- and 20-node bricks, 4- and 10-node tetrahedrons, 

• Solid-shells : 8- , 16- and 20-node hexahedrons, 6-node pentahedral element, 

• 2 dimensional elements : 4-node quadrilaterals for plane strain and axisymmetrical analysis, 

• Shell elements : 4-node quadrilaterals and 3-node triangles, 

• One dimensional elements: rivet, springs, bar and beams. 

The implementation of these elements will now be detailed. Expression of nodal forces will be developed as, for 
explicit codes they represent the discretization of the momentum equations. Stiffness matrices, which are central 
to implicit finite element approaches, are not developed here. 

5.1 Solid Hexahedron Elements  

RADIOSS brick elements have the following properties:  

• BRICK8: 8-node linear element with reduced or full integration, 

• HA8: 8-node linear element with various number of integration points going from 2x2x2 to 9x9x9, 

• HEPH: 8-node linear element with reduced integration point and physical stabilization of hourglass 
modes, 

• BRICK20: 20-node quadratic element with reduced or full integration schemes. 

For all elements, a lumped mass approach is used and the elements are isoparametric, i.e. the same shape 
functions are used to define element geometry and element displacements  

The fundamental theory of each element is described in this chapter. 

5.1.1 Shape functions for linear bricks 
Shape functions define the geometry of an element in its computational (intrinsic) domain. As was seen in 
Chapter 3, physical coordinates are transformed into simpler computational intrinsic coordinates so that 
integration of values is numerically more efficient.  
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Figure 5.1.1 8 Node Brick Element  

 

Where: ξ≡r  , η≡s  , ζ≡t  

The shape functions of an 8 node brick element, shown in Figure 5.1.1, are given by: 

( )( )( )ζηξ −−−=Φ 111
8

1
1    EQ. 5.1.1.1 

( )( )( )ζηξ +−−=Φ 111
8
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2    EQ. 5.1.1.2 

( )( )( )ζηξ +−+=Φ 111
8

1
3    EQ. 5.1.1.3 

( )( )( )ζηξ −−+=Φ 111
8

1
4    EQ. 5.1.1.4 

( )( )( )ζηξ −+−=Φ 111
8
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5    EQ. 5.1.1.5 

( )( )( )ζηξ ++−=Φ 111
8

1
6    EQ. 5.1.1.6 

( )( )( )ζηξ +++=Φ 111
8

1
7    EQ. 5.1.1.7 

( )( )( )ζηξ −++=Φ 111
8

1
8    EQ. 5.1.1.8 

The element velocity field is related by:  

iI
I

Ii vv .
8

1
∑

=
Φ=    EQ. 5.1.1.9 

where the iIv  are the nodal velocities.  
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5.1.2 Strain rate  
The relationship between the physical coordinate and computational intrinsic coordinates system for a brick 
element is given by the matrix equation:  
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Hence:  
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where ξF  is the Jacobian matrix.  

The element strain rate is defined as: 


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Relating the element velocity field to its shape function gives: 
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I j
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   EQ. 5.1.2.4 

Hence, the strain rate can be described directly in terms of the shape function:  
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As was seen in section 2.4.1, volumetric strain rate is calculated separately by volume variation.  

For one integration point: 
 

 
jjjjjjjj xxxxxxxx ∂

Φ∂−=
∂
Φ∂

∂
Φ∂−=

∂
Φ∂

∂
Φ∂−=

∂
Φ∂

∂
Φ∂−=

∂
Φ∂ 64538271 ;;;   EQ. 5.1.2.6 

F.E Method is used only for deviatoric strain rate calculation in A.L.E and Euler formulation. 

Volumetric strain rate is computed separately by transport of density and volume variation. 

5.1.3 Assumed strain rate 
Using Voigt convention, the strain rate of EQ. 5.1.2.5 can be written as: 

{ } [ ]{ } [ ]{ }∑
=

==
8

1I
II vBvBεɺ    EQ. 5.1.3.1 
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It is useful to take the Belytschko-Bachrach's mix form [27] of the shape functions written by: 
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The derivation of the shape functions is given by: 
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It is decomposed by a constant part which is directly formulated with the Cartesian coordinates, and a non-
constant part which is to be approached separately. For the strain rate, only the non-constant part is modified by 
the assumed strain. You can see in the following that the non-constant part or the high order part is just the 
hourglass terms. 

You now have the decomposition of the strain rate: 
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Belvtschko and Bindeman [65] ASQBI assumed strain is used: 
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where xIxIIX ∂
∂

∂
∂ += 31 3113 φφ γγ ; yIyIIY ∂

∂
∂
∂ += 31 3113 φφ γγ ; ;1 ν

νν −=  

To avoid shear locking, some hourglass modes are eliminated in the terms associated with shear so that no shear 

strain occurs during pure bending. E.g.: 33, II XY  in xyεɺ  terms and all fourth hourglass modes in shear terms are 

also removed since this mode is non-physical and is stabilized by other terms in [ ]H

IB . 

The terms with Poisson coefficient are added to obtain an isochoric assumed strain field when the nodal velocity 
is equivoluminal.  This avoids volumetric locking as 5.0=ν . In addition, these terms enable the element to 
capture transverse strains which occurs in a beam or plate in bending. The plane strain expressions are used since 
this prevents incompatibility of the velocity associated with the assumed strains.  

 

5.1.3.1 Incompressible or quasi-incompressible cases 

(Flag for new solid element: Icpr =0,1,2) 
For incompressible or quasi- incompressible materials, the new solid elements have no volume locking problem 
due to the assumed strain. Another way to deal with this problem is to decompose the stress field into the 
spherical part and the deviatory part and use reduced integration for spherical part so that the pressure is 
constant. This method has the advantage on the computation time, especially for the full integrated element. For 
some materials which the incompressibility can be changed during computation (for example: elastoplastic 
material, which becomes incompressible as the growth of plasticity), the treatment is more complicated. Since 
the elastoplastic material with large strain is the most frequently used, the constant pressure method has been 
chosen for RADIOSS usual solid elements.  The flag Icpr has been introduced for new solid elements. 

• Icpr =0: assumed strain with ν  terms is used. 

• Icpr =1: assumed strain without ν  terms and with a constant pressure method is used. The method is 
recommended for incompressible (initial) materials. 

• Icpr =2: assumed strain with ν  terms is used, where ν  is variable in function of the plasticity state. 
The formulation is recommended for elastoplastic materials. 

5.1.4 Internal force calculation  
Internal forces are computed using the generalized relation:  

Ω
∂
Φ∂= ∫

Ω

d
x

f
j

I
ijiI σint    EQ. 5.1.4.1 
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However, to increase the computational speed of the process, some simplifications are applied.  

5.1.4.1 Reduced Integration Method 
This is the default method for computing internal forces. A one point integration scheme with constant stress in 
the element is used. Due to the nature of the shape functions, the amount of computation can be substantially 
reduced:  

jjjjjjjj xxxxxxxx ∂
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Φ∂ 64538271 ;;;   EQ. 5.1.4.2 

Hence, the value 
j

I

x∂
Φ∂

 is taken at the integration point and the internal force is computed using the relation: 

Ω
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0j

I
ijiI x

F σ    EQ. 5.1.4.3 

The force calculation is exact for the special case of the element being a parallelepiped.  

5.1.4.2 Full Integration Method 
The final approach that can be used is the full generalized formulation found in EQ. 5.1.4.1. A classical eight 
point integration scheme, with non-constant stress, but constant pressure is used to avoid locking problems. This 
is computationally expensive, having eight deviatoric stress tensors, but will produce accurate results with no 
hourglass. 

When assumed strains are used with full integration (HA8 element), the reduced integration of pressure is no 
more necessary, as the assumed strain is then a free locking problem. 

 

5.1.4.3 Improved Integration Method for ALE 
This is an ALE method for computing internal forces (flag INTEG). A constant stress in the element is used. 

The value ∫
Ω

Ω
∂
Φ∂

d
x j

I  is computed with Gauss points. 

5.1.5 Hourglass modes  
Hourglass modes are element distortions that have zero strain energy. Thus, no stresses are created within the 
element. There are 12 hourglass modes for a brick element, 4 modes for each of the 3 coordinate directions. Γ 
represents the hourglass mode vector, as defined by Flanagan-Belytschko [12]. They produce linear strain 
modes, which cannot be accounted for using a standard one point integration scheme.  

  

 

( )1,1,1,1,1,1,1,11 −+−+−+−+=Γ  
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 ( )1,1,1,1,1,1,1,12 ++−−−−++=Γ  

  

 

 ( )1,1,1,1,1,1,1,13 −++−+−−+=Γ  

  

 

 ( )1,1,1,1,1,1,1,14 +−+−−+−+=Γ  

 

To correct this phenomenon, it is necessary to introduce anti-hourglass forces and moments. Two possible 
formulations are presented hereafter. 

5.1.5.1 Kosloff & Frasier Formulation [10] 
The Kosloff-Frasier hourglass formulation uses a simplified hourglass vector. The hourglass velocity rates are 
defined as: 

∑
=

⋅Γ=
∂

∂ 8

1I
iII

i v
t

q α
α

   EQ. 5.1.5.1 

where: 

• Γ  is the non-orthogonal hourglass mode shape vector, 

• ν  is the node velocity vector, 

• i is the direction index, running from 1 to 3, 

• I is the node index, from 1 to 8, 

• α  is the hourglass mode index, from 1 to 4. 

This vector is not perfectly orthogonal to the rigid body and deformation modes.  

All hourglass formulations except the physical stabilization formulation for solid elements in RADIOSS use a 
viscous damping technique. This allows the hourglass resisting forces to be given by: 

( ) ∑ Γ⋅
∂

∂Ω=
α

α
α

ρ I
ihgr

iI t

q
chf

2
3

4

1
   EQ. 5.1.5.2 
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where: 

• ρ  is the material density, 

• c  is the sound speed, 

• h  is a dimensional scaling coefficient defined in the input, 

• Ω  is the volume. 

5.1.5.2 Flanagan-Belytschko Formulation [12] 

In the Kosloff-Frasier formulation seen in section 5.1.5.1, the hourglass base vector α
IΓ  is not perfectly 

orthogonal to the rigid body and deformation modes that are taken into account by the one point integration 
scheme. The mean stress/strain formulation of a one point integration scheme only considers a fully linear 
velocity field, so that the physical element modes generally contribute to the hourglass energy. To avoid this, the 
idea in the Flanagan-Belytschko formulation is to build an hourglass velocity field which always remains 
orthogonal to the physical element modes. This can be written as:  

Lin
iIiI

Hour
iI vvv −=    EQ. 5.1.5.3 

The linear portion of the velocity field can be expanded to give:  

( )













−⋅

∂
∂+−= jj

j

iI
iIiI

Hour
iI xx

x

v
vvv    EQ. 5.1.5.4 

Decomposition on the hourglass vectors base gives [12]:  

αα
α

Ij
j

il
iI

Hour
iII

i x
x

v
vv

t

q Γ⋅













⋅

∂
∂−=⋅Γ=

∂
∂

   EQ. 5.1.5.5 

where: 

t

qi

∂
∂ α

 are the hourglass modal velocities, 

α
IΓ  is the hourglass vectors base. 

Remembering that iJ
j

j

j

i v
xx

v ⋅
∂
Φ∂

=
∂
∂

 and factorizing EQ. 5.1.5.5 gives: 














Γ

∂
Φ∂

−Γ⋅=
∂

∂ αα
α

Ij
j

j
IiI

i x
x

v
t

q
   EQ. 5.1.5.6 

αααγ Jj
j

j
II x

x
Γ

∂
Φ∂

−Γ=    EQ. 5.1.5.7 

is the hourglass shape vector used in place of α
IΓ  in EQ. 5.1.5.2.  
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5.1.5.3 physical hourglass formulation HEPH 
You also try to decompose the internal force vector as follows: 

{ } ( ){ } ( ){ }H

III fff int0intint +=    EQ. 5.1.5.8 

 

In elastic case, you have: 

{ } [ ] [ ] [ ]{ }

[ ] [ ]( ) [ ] [ ] [ ]( ){ }∫ ∑

∑∫

Ω =

=
Ω

Ω++=

Ω=

dvBBCBB

dvBCBf

j

JH

JJ

tH

II

j

J
J

t

II

8

1

00

8

1

int

    EQ. 5.1.5.9 

The constant part ( ){ } [ ]( ) [ ] [ ] { }∫ ∑
Ω =

Ω= dvBCBf
j

J
J

t

II

8

1

000int  is evaluated at the quadrature point just like 

other one-point integration formulations mentioned before, and the non-constant part (Hourglass) will be 
calculated as following: 

Taking the simplification of )(;0 ji
x

j

i ≠=
∂
∂
ξ

 (that is the Jacobian matrix of EQ. 5.1.2.1 is diagonal), you 

have: 

( ) ∑
=

=
4

1

int

α

α
α γ Ii

H

iI Qf    EQ. 5.1.5.10 

with 12 generalized hourglass stress rates αiQ
.

 calculated by: 

( )[ ]

4
4

.

.

.

3

1
2

1

1

jiii

i
jij

j
iiijj

k
kik

j
jij

i
ikkjjii

qHQ

qHqHQ

qHqHqHHQ

ɺ

ɺɺ

ɺɺɺ

νµ

ν
ν

µ

µ

+=






 +
−

=

+++=

   EQ. 5.1.5.11 

and 

Ω
∂
∂

∂
∂

=

Ω








∂
∂

=Ω








∂
∂

=Ω








∂
∂

=

∫

∫∫∫

Ω

ΩΩΩ

d
xx

H

d
x

d
x

d
x

H

i

j

j

i
ij

ii

k

i

j
ii

φφ

φφφ 2

4

22

3

   EQ. 5.1.5.12 

Where i,j,k are permuted between 1 to 3 and α
iqɺ  has the same definition than in EQ. 5.1.5.6. 

Extension to non-linear materials has been done simply by replacing shear modulus µ  by its effective tangent 

values which is evaluated at the quadrature point. For the usual elastoplastic materials, use a more sophistic 
procedure which is described in the following section. 
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5.1.5.3.1 Advanced elasto-plastic hourglass control 
With one-point integration formulation, if the non-constant part follows exactly the state of constant part for the 
case of elasto-plastic calculation, the plasticity will be under-estimated due to the fact that the constant 
equivalent stress is often the smallest one in the element and element will be stiffer. Therefore, defining a yield 
criterion for the non-constant part seems to be a good idea to overcome this drawback. 

Plastic yield criterion:  

The von Mises type of criterion is written by: 

0),,( 22 =−= yeqf σζηξσ    EQ. 5.1.5.13 

for any point in the solid element, where yσ  is evaluated at the quadrature point. 

As only one criterion is used for the non-constant part, two choices are possible: 

1. taking the mean value, i.e.: ( ) Ω
Ω

== ∫
Ω

dff eqeqeq σσσ 1
;  

2. taking the value by some representative points, for example: eight Gausse points 

The second choice has been used in this element. 

Elastro-plastic hourglass stress calculation:  

The incremental hourglass stress is computed by: 

• Elastic increment 

 ( ) ( ) [ ]{ } tC HH

ni
trH

ni ∆+=+ εσσ ɺ
1  

• Check the yield criterion  

• If 0≥f , the hourglass stress correction will be done by un radial return 

 ( ) ( )( )fP trH

ni
H

ni ,11 ++ = σσ  

5.1.6 Stability  
The stability of the numerical algorithm depends on the size of the time step used for time integration (section 
4.5). For brick elements, RADIOSS uses the following equation to calculate the size of the time step: 

( )12 ++
≤

ααc

l
kh    EQ. 5.1.6.1 

This is the same form as the Courant condition for damped materials. The characteristic length of a particular 
element is computed using: 

SurfaceSideLargest

VolumeElement
l =       EQ. 5.1.6.2 

For a 6-sided brick, this length is equal to the smallest distance between two opposite faces.  

The terms inside the parentheses in the denominator are specific values for the damping of the material: 

• 
cl

v

ρ
α 2=  

• ν  effective kinematic viscosity, 
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• 
ρρ∂

∂= p
c

1
 for fluid materials, 

• 
ρ

µλ
ρ
µ

ρ
2

3

4 +=+= K
c   for a solid elastic material, 

• K is the bulk modulus, 

• λ , µ   are Lame moduli. 

 

The scaling factor k=0.90, is used to prevent strange results that may occur when the time step is equal to the 
Courant condition. This value can be altered by the user. 

  

5.1.7 Shock waves  
Shocks are non-isentropic phenomena, i.e. entropy is not conserved, and necessitates a special formulation.  

The missing energy is generated by an artificial bulk viscosity q as derived by von Neumann and Richtmeyer [9]. 
This value is added to the pressure and is computed by: 

t
lcq

t
lqq kk

b
kk

a ∂
∂−









∂
∂= ερερ

2
22

   EQ. 5.1.7.1 

where  

• l is equal to 3 Ω   or to the characteristic length, 

• Ω  is the volume, 

• 
t
kk

∂
∂ε

 is the volumetric compression strain rate tensor, 

• c is the speed of sound in the medium. 

The values of aq  and bq  are adimensional scalar factors defined as:  

• aq  is a scalar factor on the quadratic viscosity to be adjusted so that the Hugoniot equations are 

verified. This value is defined by the user. The default value is 1.10.  

• bq  is a scalar factor on the linear viscosity that damps out the oscillations behind the shock. This is 

user specified. The default value is 0.05.  

Default values are adapted for velocities lower than Mach 2. However for viscoelastic materials (law 34, 35, 38) 
or honeycomb (law 28), very small values are recommended, i.e. 10-20.  

5.1.8 Element degeneration  
Element degeneration is the collapsing of an element by one or more edges. For example: making an eight node 
element into a seven node element by giving nodes 7 and 8 the same node number.  

The use of degenerated elements for fluid applications is not recommended. The use of degenerated elements for 
assumed strain formulation is not recommended. If they cannot be avoided, any two nodes belonging to a same 
edge can be collapsed, with some examples shown below. 

For solid elements, it is recommended that element symmetry be maintained.  

For 4 node elements, it is recommended that the special tetrahedron element be used. 
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Some examples of element degeneration are shown below.  

  

Not recommended degenerations 

 
 

 
 

 

Recommended degeneration 

 

Connectivity: 1 2 3 4 5 5 5 5 
 

Connectivity: 1 2 3 4 5 6 6 5 
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5.1.9 Internal stress calculation  

5.1.9.1 Global formulation 
The time integration of stresses has been stated earlier (section 2.6.) as: 

( ) ( ) tttt ijijij ∆+=∆+ σσσ ɺ       EQ. 5.1.9.1 

The stress rate is comprised of two components: 

r
ij

v
ijij σσσ ɺɺɺ +=        EQ. 5.1.9.2 

where  

• r
ijσɺ  is the stress rate due to the rigid body rotational velocity, 

• v
ijσɺ  is the Jaumann objective stress tensor derivative.  

The correction for stress rotation from time t to time t+ t∆  is given by [2]: 

kijkkjik
r
ij Ω+Ω= σσσɺ       EQ. 5.1.9.3 

where Ω  is the rigid body rotational velocity tensor (EQ. 2.4.1.11).  

The Jaumann objective stress tensor derivative v
ijσɺ  is the corrected true stress rate tensor without rotational 

effects. The constitutive law is directly applied to the Jaumann stress rate tensor.  

Deviatoric stresses and pressure (see section 2.7) are computed separately and related by: 

ijijij ps δσ −=        EQ. 5.1.9.4 

where  

• ijs  is the deviatoric stress tensor; 

• p is the pressure or mean stress - defined as positive in compression,  

• ijδ  is the substitution tensor or unit matrix.  

5.1.9.2 Co-rotational Formulation 
A co-rotational formulation for bricks is a formulation where rigid body rotations are directly computed from the 
element's node positions. Objective stress and strain tensors are computed in the local (co-rotational) frame. 
Internal forces are computed in the local frame and then rotated to the global system. 

So, when co-rotational formulation is used, EQ. 5.1.10.2 r
ij

v
ijij σσσ ɺɺɺ +=  reduces to: 

v
ijij σσ ɺɺ =         EQ. 5.1.9.5 

where v
ijσɺ  is the Jaumann objective stress tensor derivative expressed in the co-rotational frame. 

The following illustrates orthogonalization, when one of the r, s, t directions is orthogonal to the two other 
directions. 
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Isoparametric frames Local (co-rotational) 
 

When large rotations occur, this formulation is more accurate than the global formulation, for which the stress 
rotation due to rigid body rotational velocity is computed in an incremental way. 

Co-rotational formulation avoids this kind of problem.  

Let us consider the following test: 

 

Z 

X 

Fix constant velocity on the top of the 
 

The increment of the rigid body rotation vector during time step t∆  is: 

( )
( )
( )







=∂∂−∂∂
∂∂=∂∂−∂∂

=∂∂−∂∂

⋅∆=∆Ω
0//

///

0//

2/

yvxv

zvxvzv

xvyv

t

xy

xzx

yx

    EQ. 5.1.9.6 

So, 2/Ty ∆=∆Ω α  where hv /=α  equals the imposed velocity on the top of the brick divided by the 

height of the brick (constant value). 

Due to first order approximation, the increment of stress xxσ  due to the rigid body motion is: 

( ) xzxzyzxxzy
r
xx Tτατττσ ∆=∆Ω=+∆Ω=∆ 2     EQ. 5.1.9.7 

Increment of stress zzσ  due to the rigid body motion: 

( ) xzxzyzxxzy
r
zz Tτατττσ ∆−=∆Ω−=+∆Ω−=∆ 2    EQ. 5.1.9.8 

Increment of shear stress xzτ  due to the rigid body motion: 

( ) zzzzyxxzzy
r
xz Tσασσστ ∆=∆Ω=−∆Ω=∆ 2     EQ. 5.1.9.9 

Increment of shear strain: 

( ) TxvzvT zxxz ∆=∂∂+∂∂∆=∆ αγ //      EQ. 5.1.9.10 

Increment of stress zzσ  due to strain: 

0=∆ v
zzσ         EQ. 5.1.9.11 
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and increment of shear stress due to strain is: 

TGG xz
v
xz ∆=∆=∆ αγτ       EQ. 5.1.9.12 

where G is the shear modulus (material is linear elastic). 

From EQ. 5.1.9.8 to EQ. 5.1.9.12, you have: 










∆−=∆
∆+∆=∆

xzzz

zzxz TGT

τασ
ασατ

      EQ. 5.1.9.13 

System EQ. 5.1.9.13 leads to: 

xzxz T τατ 22/ −=∆∆       EQ. 5.1.9.14 

So, shear stress is sinusoidal and is not strictly increasing. 

  

 
So, it is recommended to use co-rotational formulation, especially for visco-elastic materials such as foams, even 
if this formulation is more time consuming than the global one. 

5.1.9.3 Co-rotational formulation and orthotropic material 
When orthotropic material and global formulation are used, the fiber is attached to the first direction of the 
isoparametric frame and the fiber rotates a different way depending on the element numbering (see below). 
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On the other hand, when the co-rotational formulation is used, the orthotropic frame keeps the same orientation 
with respect to the local (co-rotating) frame, and is therefore also co-rotating (see below). 

 

 

5.1.10 Deviatoric stress calculation  
With the stress being separated into deviatoric and pressure (hydrostatic) stress (Section 2.7), it is the deviatoric 
stress that is responsible for the plastic deformation of the material. The hydrostatic stress will either shrink or 
expand the volume uniformly, i.e. with proportional change in shape. The determination of the deviatoric stress 
tensor and whether the material will plastically deform requires a number of steps.  

STEP 1: Perform an Elastic Calculation  

The deviatoric stress is time integrated from the previous known value using the strain rate to compute an elastic 
trial stress: 

( ) ( ) tGtststts ijkkij
r
ijij

el
ij ∆







 −+∆+=∆+ δεε ɺɺɺ
3

1
2      EQ. 5.1.10.1 

where G is the shear modulus.  

This relationship is Hooke's Law, where the strain rate is multiplied by time to give strain.  

STEP 2: Compute von Mises Equivalent Stress and Current Yield Stress  

Depending on the type of material being modeled, the method by which yielding or failure is determined will 
vary. The following explanation relates to an elastoplastic material (LAW2).  

The von Mises equivalent stress relates a three dimensional state of stress back to a simple case of uniaxial 
tension where material properties for yield and plasticity are well known and easily computed.  

The von Mises stress, which is strain rate dependent, is calculated using the equation: 

el
ij

el
ij

e
vm ss

2

3=σ         EQ. 5.1.10.2 

The flow stress is calculated from the previous plastic strain: 

( ) ( )tbat
np

y εσ +=         EQ. 5.1.10.3 
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For material types 3, 4, 10, 21, 22, 23 and 36, EQ. 5.1.11.3 is modified according to the different modeling of the 
material curves.  

STEP 3: Plasticity Check  

The state of the deformation must be checked.  

0≤− y
e
vm σσ   

If this equation is satisfied, the state of stress is elastic. Otherwise, the flow stress has been exceeded and a 
plasticity rule must be used. This is shown in Figure 5.1.2.  

Figure 5.1.2 - Plasticity Check  

 
The plasticity algorithm used is due to Mendelson, [1].  

STEP 4: Compute Hardening Parameter  

The hardening parameter is defined as the slope of the strain-hardening part of the stress-strain curve:  

p

y

d

d
H

ε
σ

=         EQ. 5.1.10.4 

This is used to compute the plastic strain at time t: 

HG
t yvmp

+
−

=∆
3

σσ
εɺ        EQ. 5.1.10.5 

This plastic strain is time integrated to determine the plastic strain at time tt ∆+ : 

( ) ( ) tttt ppp ∆+=∆+ εεε ɺ        EQ. 5.1.10.6 

The new flow stress is found using:  

( ) ( )ttbatt
np

y ∆++=∆+ εσ       EQ. 5.1.10.7 

STEP 5: Radial Return  

There are many possible methods for obtaining pa
ijs  from the trial stress. The most popular method involves a 

simple projection to the nearest point on the flow surface, which results in the radial return method. 

The radial return calculation is given in EQ. 5.1.10.8.  Figure 5.1.3 is a graphic representation of radial return.  

el
ij

vm

ypa
ij ss

σ
σ

=        EQ. 5.1.10.8 
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Figure 5.1.3 - Radial Return  

 



RADIOSS THEORY Version 2017  ELEMENT LIBRARY 
 

01-Jan-2017 23

5.2 Solid Tetrahedron Elements  

5.2.1 4 node solid tetrahedron 
The RADIOSS solid tetrahedron element is a 4 node element with one integration point and a linear shape 
function. 

This element has no hourglass. But the drawbacks are the low convergence and the shear locking. 

5.2.2 10 node solid tetrahedron 
The RADIOSS solid tetrahedron element is a 10 nodes element with 4 integration points and a quadratic shape 
function as shown in Figure 5.2.1. 

Figure 5.2.1 – (a) Isoparametric 10 node tetrahedron , (b) Nodal mass distribution 

 

 
 

Introducing volume coordinates in an isoparametric frame: 

rL =1  

sL =2  

tL =3  

3214 1 LLLL −−−=  
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The shape functions are expressed by: 

( ) 111 12 LL −=Φ         EQ. 5.2.2.1 

( ) 222 12 LL −=Φ        EQ. 5.2.2.2 

( ) 333 12 LL −=Φ        EQ. 5.2.2.3 

( ) 444 12 LL −=Φ        EQ. 5.2.2.4 

215 4 LL=Φ        EQ. 5.2.2.5 

326 4 LL=Φ        EQ. 5.2.2.6 

137 4 LL=Φ        EQ. 5.2.2.7 

418 4 LL=Φ        EQ. 5.2.2.8 

429 4 LL=Φ        EQ. 5.2.2.9 

4310 4 LL=Φ        EQ. 5.2.2.10 

Location of the 4 integration points is expressed by [49].  

 

With, 

585410200⋅=α  and 138196600⋅=β  

a, b, c, and d are the 4 integration points. 

5.2.2.1 Advantages and drawbacks 
This element has various advantages: 

• No hourglass 

• Compatible with powerful mesh generators  

• Fast convergence 

• No shear locking. 

But there are some drawbacks too: 

• Low time step 

• Not compatible with ALE formulation 

• No direct compatibility with contact interface and other elements. 

5.2.2.2 Time step 
The time step for a regular tetrahedron is computed as: 
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c

L
dt c=         EQ. 5.2.2.11 

Where, Lc is the characteristic length of element depending on tetra type. The different types are shown in the 
following figures:  

For a regular 4 node tetra as shown in Figure 5.2.2: 

aLaL cc 816.0;
3

2 ==       EQ. 5.2.2.12 

Figure 5.2.2 - 4 nodes tetra 

 

For a regular 10 node tetra as shown in Figure 5.2.3: 

aLaL cc 264.0;
6

2/5 ==       EQ. 5.2.2.13 

Figure 5.2.3 - 10 nodes tetra 

 

For another regular tetra obtained by the assemblage of four hexa as shown in Figure 5.2.4, the characteristic 
length is: 

aLaL cc 204.0;
4

3/2 ==       EQ. 5.2.2.14 

Figure 5.2.4 - Other regular tetra 

 

5.2.2.3 CPU cost: Time/Element/Cycle 
The CPU cost is shown in Figure 5.2.5: 
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Figure 5.2.5 - CPU cost in TEC  

 

5.2.2.4 Comparison example 
Below is a comparison of the 3 types of elements (8-nodes brick, 10-nodes tetra and 20-nodes brick). The results 
are shown in Figure 5.2.6 for a plastic strain contour. 

 

Figure 5.2.6 - Comparison (plastic strain max = 60%) 

8 nodes brick            10 nodes tetras          20 nodes brick8 nodes brick            10 nodes tetras          20 nodes brick
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5.3 SHELL ELEMENTS  

Since the degenerated continuum shell element formulation was introduced by Ahmad et al.[38], it has become 
dominant in commercial Finite Element codes due to its advantage of being independent of any particular shell 
theory, versatile and cost effective, and applicable in a reliable manner to both thin and thick shells. 

In the standard 4-node shell element, full integration and reduced integration schemes have been used to 
compute the stiffness matrices and force vectors: 

- The full integration scheme is often used in programs for static or dynamic problems with implicit time 
integration. It presents no problem for stability, but sometimes involves “locking” and computations are often 
more expensive. 

- The reduced integration scheme, especially with one-point quadrature (in the mid-surface), is widely used in 
programs with explicit time integration such as RADIOSS and other programs applied essentially in 
crashworthiness studies. These elements dramatically decrease the computation time, and are very competitive if 
the hourglass modes (which result from the reduced integration scheme) are “well” stabilized. 

5.3.1 Introduction 
The historical shell element in RADIOSS is a simple bilinear Mindlin plate element coupled with a reduced 
integration scheme using one integration point. It is applicable in a reliable manner to both thin and moderately 
thick shells. 

This element is very efficient if the spurious singular modes, called “hourglass modes”, which result from the 
reduced integration are stabilized. 

The stabilization approach consists of providing additional stiffness so that the spurious singular modes are 
suppressed. Also, it offers the possibility of avoiding some locking problems. One of the first solutions was to 
generalize the formulation of Kosloff and Frazier [10] for brick element to shell element. It can be shown that 
the element produces accurate flexural response (thus, free from the membrane shear locking) and is equivalent 
to the incompatible model element of Wilson et al. [21] without the static condensation procedure. Taylor [47] 
extended this work to shell elements. Hughes and Liu [22] employed a similar approach and extended it to non-
linear problems. 

Belytschko and Tsay [23] developed a stabilized flat element based on the γ  projections developed by Flanagan 

and Belytschko [12]. Its essential feature is that hourglass control is orthogonal to any linear field, thus 
preserving consistency. The stabilized stiffness is approached by a diagonal matrix and scaled by the 

perturbation parameters ih  which are introduced as a regulator of the stiffness for nonlinear problems. The 

parameters ih  are generally chosen to be as small as possible, so this approach is often called, perturbation 

stabilization. 

The elements with perturbation stabilization have two major drawbacks: 

• The parameters ih  are user-inputs and are generally problem-dependent. 

• Poor behavior with irregular geometries (in-plane, out-of-plane). The stabilized stiffness (or stabilized 
forces) is often evaluated based on a regular flat geometry, so they generally do not pass either the 
Patch-test or the Twisted beam test. 

Belytschko et al. [17] extended this perturbation stabilization to the 4-node shell element which has become 
widely used in explicit programs. 

Belytschko et al. [24] improved the poor behavior exhibited in the warped configuration by adding a coupling 
curvature-translation term, and a particular nodal projection for the transverse shear calculation analogous to that 
developed by Hughes and Tezduyar [25], and MacNeal [26]. This element passes the Kirchhoff patch test and 
the Twisted beam test, but it cannot be extended to a general 6 DOF element due to the particular projection. 

Belytschko and Bachrach [27] used a new method called “physical stabilization” to overcome the first drawback 
of the quadrilateral plane element. This method consists of explicitly evaluating the stabilized stiffness with the 
help of 'assumed strains', so that no arbitrary parameters need to be prescribed. Engelmann and Whirley [28] 
have applied it to the 4-node shell element. An alternative way to evaluate the stabilized stiffness explicitly is 
given by Liu et al. [29] based on Hughes and Liu's 4-node selected reduced integration scheme element [22], in 



RADIOSS THEORY Version 2017  ELEMENT LIBRARY 
 

01-Jan-2017 28

which the strain field is expressed explicitly in terms of natural coordinates by a Taylor-series expansion. A 
remarkable improvement in the one-point quadrature shell element with physical stabilization has been 
performed by Belytschko and Leviathan [18]. The element performs superbly for both flat and warped elements 
especially in linear cases, even in comparison with a similar element under a full integration scheme, and is only 
20% slower than the Belytschko and Tsay element.  More recently, based on Belytschko and Leviathan's 
element, Zhu and Zacharia [30] implemented the drilling rotation DOF in their one-point quadrature shell 
element; the drilling rotation is independently interpolated by the Allman function [39] based on Hughes and 
Brezzi's [41] mixed variational formulation. 

The physical stabilization with assumed strain method seems to offer a rational way of developing a cost 
effective shell element with a reduced integration scheme. The use of the assumed strains based on the mixed 
variational principles, is powerful, not only in avoiding the locking problems (volumetric locking, membrane 
shear locking, as in Belytschko and Bindeman [31]; transverse shear locking, as in Dvorkin and Bathe [32]), but 
also in providing a new way to compute stiffness. However, as highlighted by Stolarski et al. [33], assumed 
strain elements generally do not have rigorous foundations; there is almost no constraint for the independent 
assumed strains interpolation. Therefore, a sound theoretical understanding and numerous tests are needed in 
order to prove the legitimacy of the assumed strain elements. 

The greatest uncertainty of the one-point quadrature shell elements with physical stabilization is with respect to 
the nonlinear problems. All of these elements with physical stabilization mentioned above rely on the 
assumptions that the spin and the material properties are constant within the element. The first assumption is 
necessary to ensure the objectivity principle in geometrical nonlinear problems. The second was adapted in order 
to extend the explicit evaluation of stabilized stiffness for elastic problems to the physical nonlinear problems. It 
is found that the second assumption leads to a theoretical contradiction in the case of an elastoplastic problem (a 
classic physical nonlinear problem), and results in poor behavior in case of certain crash computations. 

Zeng and Combescure [15] have proposed an improved 4-node shell element named QPPS with one-point 
quadrature based on the physical stabilization which is valid for the whole range of its applications (see the 
Chapter 5.3.12). The formulation is based largely on that of Belytschko and Leviathan. 

Based on the QPPS element, Zeng and Winkelmuller have developed a new improved element named QEPH 
which is integrated in RADIOSS 44 version (see Chapter 5.3.13).  

5.3.2 Bilinear Mindlin plate element  
Most of the following explanation concerns four node plate elements, Figure 5.3.1. Section 5.3.13 explains the 
three node plate element, shown in Figure 5.3.2.  

Figure 5.3.1 - Four Node Plate Element  
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Figure 5.3.2 - Three Node Plate Element  

 
Plate theory assumes that one dimension (the thickness, z) of the structure is small compared to the other 
dimensions. Hence, the 3D continuum theory is reduced to a 2D theory. Nodal unknowns are the velocities 

)( zyx vvv ′′  of the mid plane and the nodal rotation rates ( )yx ωω ′  as a consequence of the suppressed z direction. 

The thickness of elements can be kept constant, or allowed to be variable. This is user defined. The elements are 

always in a state of plane stress, i.e. 0=zzσ , or there is no stress acting perpendicular to the plane of the 

element. A plane orthogonal to the mid-plane remains a plane, but not necessarily orthogonal as in Kirchhoff 

theory, (where 0== yzxz εε ) leading to the rotations rates 
y

vz
x ∂

∂−=ω  and 
x

vz
y ∂

∂=ω . In Mindlin plate 

theory, the rotations are independent variables.  

5.3.3 Time step for stability  
The characteristic length, L, for computing the critical time step, referring back to Figure 5.3.3, is defined by:  

( )42,13max
1

area
L =        EQ. 5.3.3.1 

( )42,13,41,34,23,12min2 =L      EQ. 5.3.3.2 

( )21,max LLLc =        EQ. 5.3.3.3 

When the orthogonalized mode of the hourglass perturbation formulation is used, the characteristic length is 
defined as:  

 ( )213 ,max LLL =        EQ. 5.3.3.4 

( )
( )fm hh

LL
L

′

+=
max

5.0 21
4       EQ. 5.3.3.5 

 ( )43,min LLLc =        EQ. 5.3.3.6 

where mh  is the shell membrane hourglass coefficient and fh  is the shell out of plane hourglass coefficient, as 

mentioned in section 5.3.8. 

5.3.4 Local reference frame  
Three coordinate systems are introduced in the formulation: 

• Global Cartesian fixed system ( )kZjYiXX
���

++=  

• Natural system ( )ζηξ ,, , covariant axes x,y  
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• Local systems (x,y,z) defined by an orthogonal set of unit base vectors (t1,t2,n). n is taken to be 
normal to the mid-surface coinciding with ζ , and (t1,t2 ) are taken in the tangent plane of the mid-

surface.  

Figure 5.3.3 - Local Reference Frame 

 
The vector normal to the plane of the element at the mid point is defined as:  

yx

yx
n

×
×=        EQ. 5.3.4.1 

The vector defining the local direction is:  

x

x
t =1   

y

y
t =2        EQ. 5.3.4.2 

Hence, the vector defining the local direction is found from the cross product of the two previous vectors:  

12 tnt ×=        EQ. 5.3.4.3 

5.3.5 Bilinear shape functions  
The shape functions defining the bilinear element used in the Mindlin plate are: 

( ) ( )( )ηηξξηξ III ++=Φ 11
4

1
,      EQ. 5.3.5.1 

or, in terms of local coordinates: 

( ) xydycxbayx IIIII +++=Φ ,      EQ. 5.3.5.2 

It is also useful to write the shape functions in the Belytschko-Bachrach mix form [27]: 

( ) ξηγξη IyIxIII ybxbyx +++∆=Φ ,,      EQ. 5.3.5.3 
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with  

( ) ( )[ ] ( )1,1,1,1; =−−=∆ tbytbxtt yI
I

IxI
I

III  

( ) ( )( )2/;/13423124 jiijxI fffAyyyyb −==  

( ) AxxxxbyI /31241342=  

( ) ( )[ ] ( )1,1,1,1;4/ −−=ΓΓ−Γ−Γ= xI
J

JxI
J

JII bybxγ  

A is the area of the element 

The velocity of the element at the mid-plane reference point is found using the relations:  

∑
=

Φ=
4

1I
xIIx vv        EQ. 5.3.5.4 

∑
=

Φ=
4

1I
yIIy vv        EQ. 5.3.5.5 

∑
=

Φ=
4

1I
zIIz vv        EQ. 5.3.5.6 

where, zIyIxI vvv ,,  are the nodal velocities in the x,y,z directions.  

In a similar fashion, the element rotations are found by: 

∑
=

Φ=
4

1I
xIIx ωω        EQ. 5.3.5.7 

∑
=

Φ=
4

1I
yIIy ωω        EQ. 5.3.5.8 

where xIω  and yIω  are the nodal rotational velocities about the x and y reference axes.  

The velocity change with respect to the coordinate change is given by:  

∑
= ∂

Φ∂=
∂
∂ 4

1I
xI

Ix v
xx

v
       EQ. 5.3.5.9 

∑
= ∂

Φ∂=
∂
∂ 4

1I
xI

Ix v
yy

v
       EQ. 5.3.5.10 

5.3.6 Mechanical properties 
Shell elements behave in two ways, either membrane or bending behavior. The Mindlin plate elements that are 
used by RADIOSS account for bending and transverse shear deformation. Hence, they can be used to model 
thick and thin plates.  

5.3.6.1 Membrane Behavior 

The membrane strain rates for Mindlin plate elements are defined as: 

x

v
e x

xx ∂
∂=ɺ        EQ. 5.3.6.1 
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y

v
e y

yy ∂
∂

=ɺ        EQ. 5.3.6.2 










∂
∂

+
∂
∂=

x

v

y

v
e yx

xy 2

1
ɺ       EQ. 5.3.6.3 










∂
∂+=









∂
∂+

∂
∂=

x

v

x

v

z

v
e z

y
zx

xz ω
2

1

2

1
ɺ      EQ. 5.3.6.4 










∂
∂+−=









∂
∂+

∂
∂

=
y

v

y

v

z

v
e z

x
zy

yz ω
2

1

2

1
ɺ      EQ. 5.3.6.5 

where ijeɺ  is the membrane strain rate.  

5.3.6.2 Bending Behavior 

The bending behavior in plate elements is described using the amount of curvature. The curvature rates of the 
Mindlin plate elements are defined as:  

x
y

x ∂
∂

=
ω

χɺ        EQ. 5.3.6.6 

y
x

y ∂
∂−= ωχɺ        EQ. 5.3.6.7 










∂
∂−

∂
∂

=
xy

xy
xy

ωω
χ

2

1
ɺ       EQ. 5.3.6.8 

where ijχɺ  is the curvature rate.  

5.3.6.3 Strain Rate calculation 

The calculation of the strain rate of an individual element is divided into two parts, membrane and bending strain 
rates.  

Membrane Strain rate 

The vector defining the membrane strain rate is:  

{ } { }xyyxm eeee ɺɺɺɺ 2′′=        EQ. 5.3.6.9 

This vector is computed from the velocity field vector { }mv  and the shape function gradient { }mB :  

{ } { } { }mmm vBe =ɺ        EQ. 5.3.6.10 

where  

{ } { }44332211
yxyxyxyxm vvvvvvvvv ′′′′′′′=       EQ. 5.3.6.11 

[ ]


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
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
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Φ∂
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Φ∂
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Φ∂
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Φ∂
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Φ∂
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Φ∂
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Φ∂
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Φ∂

∂
Φ∂

∂
Φ∂
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Φ∂

∂
Φ∂

∂
Φ∂

∂
Φ∂

∂
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xxxx

B m

44332211

4321

4321

0000

0000

  EQ. 5.3.6.12 
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Bending Strain rate 

The vector defining the bending strain rate is:  

{ } { }yzxzyxyxb eee ɺɺɺɺɺɺ 222 ′′′′= χχχ       EQ. 5.3.6.13 

As with the membrane strain rate, the bending strain rate is computed from the velocity field vector. However, 
the velocity field vector for the bending strain rate contains rotational velocities, as well as translations:  

{ } { } { }bbb vBe =ɺ        EQ. 5.3.6.14 

where  

{ } { }432144332211 ,,,,,,,,,,, zzzzxyxyxyxyb vvvvv ωωωωωωωω −−−−=    EQ. 5.3.6.15 
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EQ. 5.3.6.16 

  

Figure 5.3.4 - Strain rate calculation 
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5.3.6.4 Mass and Inertia 

Consider a rectangular plate with sides of length a and b, surface area A = ab and thickness t, as shown in Figure 
5.3.5.  

Figure 5.3.5 - Mass Distribution  

 
Due to the lumped mass formulation used by RADIOSS, the lumped mass at a particular node is:  

Atm ρ
4

1=        EQ. 5.3.6.17 

The mass moments of inertia, with respect to local element reference frame, are calculated at node i by:  








 +=
12

22 tb
mI xx        EQ. 5.3.6.18 








 +=
12

22 ta
mI yy        EQ. 5.3.6.19 








 +=
12

22 ba
mI zz        EQ. 5.3.6.20 

16

ab
mI xy −=        EQ. 5.3.6.21 

5.3.6.5 Inertia Stability 

With the exact formula for inertia (EQS 5.3.6.18 to 5.3.6.21), the solution tends to diverge for large rotation 
rates. Belytschko proposed a way to stabilize the solution by setting I xx = I yy , i.e. to consider the rectangle as a 
square with respect to the inertia calculation only. This introduces an error into the formulation. However, if the 
aspect ratio is small the error will be minimal. In RADIOSS a better stabilization is obtained by:  









+=

12

2t

f

A
mI xx        EQ. 5.3.6.22 

xxyyzz III ==        EQ. 5.3.6.23 

0=xyI         EQ. 5.3.6.24 

where f is a regulator factor with default value f=12 for QBAT element and f=9 for other quadrilateral elements. 

x 

y 

z 

a 

b 

1 2 

3 4 

m 
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5.3.7 Internal forces 
The internal force vector is given by: 

∫
Ω

Ω=
e

et dBf σint        EQ. 5.3.7.1 

 

In elasticity it becomes: 

∫
Ω

Ω=
e

etCBvdBf int       EQ. 5.3.7.2 

It can be written as: 

hgr

fff int0intint +=        EQ. 5.3.7.3 

with the constant part 
0intf  being computed with one-point quadrature and the non constant part or hourglass 

part 
hgr

f int  being computed by perturbation stabilization (Ishell = 1, 2 ,3 ...) or by physical stabilization (Ishell = 

22).  

5.3.8 Hourglass modes  
Hourglass modes are element distortions that have zero strain energy. The 4 node shell element has 12 
translational modes, 3 rigid body modes (1, 2, 9), 6 deformation modes (3, 4, 5, 6, 10, 11) and 3 hourglass modes 
(7, 8, 12).  

Figure 5.3.6 - Translational Modes of Shell  

 
Along with the translational modes, the 4 node shell has 12 rotational modes: 4 out of plane rotation modes (1, 2, 
3, 4), 2 deformation modes (5, 6), 2 rigid body or deformation modes (7, 8) and 4 hourglass modes (9, 10, 11, 
12). 
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Figure 5.3.7 - Rotational Modes of Shell  

 

5.3.8.1 Hourglass Viscous Forces 

Hourglass resistance forces are usually either viscous or stiffness related. The viscous forces relate to the rate of 
displacement or velocity of the elemental nodes, as if the material was a highly viscous fluid. The viscous 
formulation used by RADIOSS is the same as that outlined by Kosloff and Frasier [10]. Refer to section 5.1.5. 
An hourglass normalized vector is defined as:  

( )1,1,1,1 −−=Γ        EQ. 5.3.8.1 

The hourglass velocity rate for the above vector is defined as: 

432 iiiiIiII
i vvvvv

t

q −+−=Γ=
∂
∂

      EQ. 5.3.8.2 

The hourglass resisting forces at node I for in-plane modes are: 

I
i

m
hgr

iI t

qA
hctf Γ

∂
∂=

24
1 ρ       EQ. 5.3.8.3 

For out of plane mode, the resisting forces are:  

104
1 2 fhgr

iI

h
ctf ρ= I

i

t

q Γ
∂
∂

      EQ. 5.3.8.4 

where  

i is the direction index,  

I is the node index,  

t is the element thickness,  

c is the sound propagation speed,  

A is the element area,  

ρ is the material density,  
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h m is the shell membrane hourglass coefficient,  

h f  is the shell out of plane hourglass coefficient.  

5.3.8.2 Hourglass Elastic Stiffness Forces 

RADIOSS can apply a stiffness force to resist hourglass modes. This acts in a similar fashion to the viscous 
resistance, but uses the elastic material stiffness and node displacement to determine the size of the force. The 
formulation is the same as that outlined by Flanagan et al. [12]. Refer to section 5.1.5.2. The hourglass resultant 
forces are defined as: 

I
hgr

i
hgr

iI ff Γ=        EQ. 5.3.8.5 

For membrane modes:  

( ) ( ) t
t

q
Ethtfttf i

m
hgr

i
hgr

i ∆
∂
∂+=∆+

8

1
     EQ. 5.3.8.6 

For out of plane modes:  

( ) ( ) t
t

q
Ethtfttf i

f
hgr

i
hgr

i ∆
∂
∂+=∆+ 3

40

1
    EQ. 5.3.8.7 

where  

t is the element thickness,  

∆t is the time step,  

E is Young's Modulus. 

5.3.8.3 Hourglass Viscous Moments 

This formulation is analogous to the hourglass viscous force scheme. The hourglass angular velocity rate is 
defined for the main hourglass modes as:  

4321 iiii
I
iII

i

t

r ωωωωω −+−=Γ=
∂
∂

     EQ. 5.3.8.8 

The hourglass resisting moments at node I are given by: 

I
irhgr

iI t

r
cAt

h
m Γ

∂
∂= 2

250

1 ρ       EQ. 5.3.8.9 

where h r  is the shell rotation hourglass coefficient. 

5.3.9 Hourglass resistance 
To correct this phenomenon, it is necessary to introduce anti-hourglass forces and moments. Two possible 
formulations are presented hereafter. 

5.3.9.1 Flanagan-Belytschko Formulation [12] 

Ishell=1 

In the Kosloff-Frasier formulation seen in section 5.1.5.1, the hourglass base vector 
α

IΓ  is not perfectly 

orthogonal to the rigid body and deformation modes that are taken into account by the one point integration 
scheme. The mean stress/strain formulation of a one point integration scheme only considers a fully linear 
velocity field, so that the physical element modes generally contribute to the hourglass energy. To avoid this, the 
idea in the Flanagan-Belytschko formulation is to build an hourglass velocity field which always remains 
orthogonal to the physical element modes. This can be written as:  

Lin
iIiI

Hour
iI vvv −=        EQ. 5.3.9.1 
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The linear portion of the velocity field can be expanded to give:  

( )










−⋅

∂
∂+−= jj

j

iI
iIiI

Hour
iI xx

x

v
vvv      EQ. 5.3.9.2 

Decomposition on the hourglass base vectors gives [12]:  

αα
α

Ij
j

iI
iI

Hour
iII

i x
x

v
vv

t

q Γ⋅












⋅

∂
∂−=⋅Γ=

∂
∂

     EQ. 5.3.9.3 

where  

t

qi

∂
∂ α

 are the hourglass modal velocities, 

α
IΓ  are the hourglass vectors, base. 

Remembering that iJ
j

j

j

i v
xx

v ⋅
∂
Φ∂

=
∂
∂

 and factorizing EQ. 5.1.5.5 gives: 














Γ

∂
Φ∂−Γ⋅=

∂
∂ αα

α

Jj
j

J
IiI

i x
x

v
t

q
     EQ. 5.3.9.4 

αααγ Jj
j

J
II x

x
Γ

∂
Φ∂−Γ=       EQ. 5.3.9.5 

is the hourglass shape vector used in place of α
IΓ  in EQ. 5.1.5.2.  

Figure 5.3.8 - Flanagan Belytschko Hourglass formulation 
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5.3.9.2 Elastoplastic Hourglass Forces 

Ishell=3 

The same formulation as elastic hourglass forces is used (section 5.3.8.2 and Flanagan et al. [12]) but the forces 
are bounded with a maximum force depending on the current element mean yield stress. The hourglass forces are 
defined as: 

I
hgr

i
hgr

iI ff Γ=        EQ. 5.3.9.6 

For in plane mode: 

( ) ( ) t
t

q
Ethtfttf i

m
hgr

i
hgr

i ∆
∂
∂+=∆+

8
1

     EQ. 5.3.9.7 

( ) ( ) 






 ∆+=∆+ Athttfttf ym
hgr

i
hgr

i σ
2
1

,min     EQ. 5.3.9.8 

For out of plane mode: 

( ) ( ) t
t

q
Ethtfttf i

f
hgr

i
hgr

i ∆
∂
∂+=∆+ 3

40

1
    EQ. 5.3.9.9 

( ) ( ) 






 ∆+=∆+ 2

4

1
,min thttfttf yf

hgr
i

hgr
i σ     EQ. 5.3.9.10 

where: 

t is the element thickness, 

σy is the yield stress, 

A is the element area. 

5.3.9.3 Physical Hourglass Forces 

Ishell=22, 24 

The hourglass forces are given by: 

∫
Ω

Ω=
e

eHHthgr
vdCBBf int       EQ. 5.3.9.11 

For in-plane membrane rate-of-deformation, with ξη=Φ  and Iγ  defined in EQ 5.3.5.3: 

( )[ ]
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     EQ. 5.3.9.12 

For bending: 

( )[ ]
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

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

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



−
−=

yx

y
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II
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I

,,

0,

,0

φγφγ
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φγ
      EQ. 5.3.9.13 

It is shown in [16] that the non-constant part of the membrane strain rate does not vanish when a warped element 

undergoes a rigid body rotation. Thus, a modified matrix [ ( )Hm
IB ] is chosen using I

I zz γγ =  as a measure of 

the warping: 
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    EQ. 5.3.9.14 

This matrix is different from the Belytschko-Leviathan [17] correction term added at rotational positions, which 
couples translations to curvatures as follows: 
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    EQ. 5.3.9.15 

This will lead to “membrane locking” (the membrane strain will not vanish under a constant bending loading). 
According to the general formulation, the coupling is presented in terms of bending and not in terms of 

membrane, yet the normal translation components in ( m
IB ) do not vanish for a warped element due to the 

tangent vectors ( )ηξ ,it  which differ from ti(0,0).  

5.3.9.4 Full integrated formulation 

Ishell=12 

The element is based on the Q4γ24 shell element developed in [40] by Batoz and Dhatt. The element has 4 nodes 
with 5 local degrees-of-freedom per node. Its formulation is based on the Cartesian shell approach where the 
middle surface is curved. The shell surface is fully integrated with four Gauss points. Due to an in-plane reduced 
integration for shear, the element shear locking problems are avoided. The element without hourglass 
deformations is based on Mindlin-Reissner plate theory where the transversal shear deformation is taken into 
account in the expression of the internal energy. The reader is invited to consult the reference for more details. 

5.3.9.5 Shell membrane damping 

The shell membrane damping, dm, is only used for law 25, 27, 19, 32 and 36. The Shell membrane damping 
factor is a factor on the numerical VISCOSITY and not a physical viscosity. Its effect is shown in the formula of 
the calculation of forces in a shell element: 

dm = dm read in D00 input (Shell membrane damping factor parameter) then: 

AREAcdmdm D ⋅⋅⋅⋅= 0002 ρ      EQ. 5.3.9.16 

Effect in the force vector (F) calculation: 








 ++=
2
22

1111

εε
ɺ

ɺdmFF oldnew       EQ. 5.3.9.17 








 ++=
2
11

2222

εε
ɺ

ɺdmFF oldnew      EQ. 5.3.9.18 

3
12

33

εɺ
dmFF oldnew +=       EQ. 5.3.9.19 

Where:  0ρ  is the density 

AREA is the area of the shell element surface 

dt is the time step 

c is the sound speed 
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In order to calibrate the dm value so that it represents the physical viscosity, one should obtain the same size for 
all shell elements (Cf. AREA factor), then scale the physical viscosity value to the element size. 

5.3.10 Stress and strain calculation  
The stress and strain for a shell element can be written in vector notation. Each component is a stress or strain 
feature of the element. The generalized strain ε can be written as:  

{ } { }xyyxxyyx kkkeee ,,,,,=ε       EQ. 5.3.10.1 

where  

eij is the membrane strain,  

χ ij is the bending strain or curvature.  

The generalized stress Σ can be written as:  

{ } { }xyyxxyyx MMMNNN ,,,,,=∑       EQ. 5.3.10.2 

where:  ∫
−

=
2/

2/

t
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xx dzN σ  ∫
−
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xx zdzM σ   
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yy dzN σ  ∫
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t

t

xyxy zdzM σ  

∫
−

=
2/

2/

t

t

yzyz dzN σ  ∫
−

=
2/

2/

t

t

xzxz dzN σ  

5.3.10.1 Isotropic Linear Elastic Stress Calculation 

The stress for an isotropic linear elastic shell for each time increment is computed using: 

){ } ( ){ } { } ttttel ∆+∑=∆+∑ εɺL(      EQ. 5.3.10.3 

where        EQ. 5.3.10.4 
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     EQ. 5.3.10.6 
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    EQ. 5.3.10.7 

E is the Young's or Elastic Modulus,  

ν  is Poisson's Ratio,  

t is the shell thickness.  

5.3.10.2 Isotropic Linear Elastic-Plastic Stress Calculation 

An incremental step-by-step method is usually used to resolve the nonlinear problems due to elasto-plastic 
material behavior. The problem is presented by the resolution of the following equation: 

( )pεε ɺɺɺ −= :Cσ    EQ. 5.3.10.8 

( ) p
yyeqy Hf εσσσσσ ɺɺ ==−= ;0, 22

   EQ. 5.3.10.9 

0=fɺ    EQ. 5.3.10.10 

and λ
σ

ε ɺɺ
∂
∂= f

p    EQ. 5.3.10.11 

f is the yield surface function for plasticity for associative hardening. The equivalent stress eqσ  may be 

expressed in form: 

{ } [ ]{ }σσσ At
eq =2    EQ. 5.3.10.12 

with { }

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
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300

01

01
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A  for von Mises criteria. 

The normality law (EQ. 5.3.10.11) for associated plasticity is written as: 

{ } ( ) [ ]{ } [ ]{ }σ
σ
ελσλ

σ
ε AA

f

y

p

p

ɺ
ɺɺɺ ==

∂
∂= 2    EQ. 5.3.10.13 

Where pεɺ  is the equivalent plastic deformation. 

EQ. 5.3.10.8 is written in an incremental form: 

{ } { } { } { } [ ]{ } { }( ) { } [ ][ ]{ } 111 ++
∗

+ −=−+=+= nn
y

p

pnnn AC
d

ddCd σ
σ

εσεεσσσσ  EQ. 5.3.10.14 
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Where { }*σ  represents stress components obtained by an elastic increment and [C] the elastic matrix in plane 

stress. The equations EQ. 5.3.10.8 to 14 lead to obtain the nonlinear equation: 

( ) 0=pdf ε     EQ. 5.3.10.15 

that can be resolved by an iterative algorithm as Newton-Raphson method. 

To determine the elastic-plastic state of a shell element, a number of steps have to be performed to check for 
yielding and defining a plasticity relationship. Stress-strain and force-displacement curves for a particular ductile 
material are shown in Figure 5.3.9.  

Figure 5.3.9 - Material Curve  

 
The steps involved in the stress calculation are as follows. 

1. Strain calculation at integration point z 

The overall strain on an element due to both membrane and bending forces is: 

xxx ze χε −=        EQ. 5.3.10.16 

yyy ze χε −=        EQ. 5.3.10.17 

xyxyxy ze χε −=        EQ. 5.3.10.18 

{ } { }xyyx εεεε ,,=        EQ. 5.3.10.19 

2. Elastic stress calculation 

The stress is defined as:  

{ } { }xyyx σσσσ ,,=        EQ. 5.3.10.20 
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It is calculated using explicit time integration and the strain rate:  

( ){ } ( ){ } { } ttttel ∆+=∆+ εσσ ɺL      EQ. 5.3.10.21 
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The two shear stresses acting across the thickness of the element are calculated by: 

( ) ( ) te
v

E
ttt yzyz

el
yz ∆

+
+=∆+ ɺ

1
ασσ      EQ. 5.3.10.22 

( ) ( ) te
v

E
ttt xzxz

el
xz ∆

+
+=∆+ ɺ

1
ασσ  

where α is the shear factor. Default is Reissner's value of 5/6.  

3. von Mises yield criterion 

The von Mises yield criterion for shell elements is defined as:  

2222 3 xyyxyxvm σσσσσσ +−+=      EQ. 5.3.10.23 

For type 2 simple elastic-plastic material, the yield stress is calculated using: 

( ) ( )tbat
np

yield εσ +=       EQ. 5.3.10.24 

This equation will vary according to the type of material being modeled.  

4. Plasticity Check 

The element's state of stress must be checked to see if it has yielded. These values are compared with the von 
Mises and Yield stresses calculated in the previous step. If the von Mises stress is greater than the yield stress, 
then the material will be said to be in the plastic range of the stress-strain curve.  

 

 

Figure 5.3.10 - Plasticity Check  

 
5. Compute plastically admissible stresses 

If the state of stress of the element is in the plastic region, there are two different analyses that can be used as 
described in the next paragraph. The scheme used is defined in the shell property set, card 2 of the input.  
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 6. Compute thickness change 

The necking of the shells undergoing large strains in hardening phase can be taken into account by computing 

normal strain zzε  in an incremental process. The incompressibility hypothesis in plasticity gives:  

( )p p p
zz xx yyd d dε ε ε= − +    EQ. 5.3.10.25 

where the components of membrane strain p
xxdε and p

yydε  are computed by EQ. 5.3.10.13 as: 
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   EQ. 5.3.10.26 

The plan stress condition 0=zzdσ  allows to resolve for zzdε : 

( ) p
zzyyxxzz dddd ε

υ
υεε

υ
υε

−
−++

−
−=

1

21

1
   EQ. 5.3.10.27 

5.3.10.3 Plastically Admissible Stresses 

Radial return 

Iplas=2 

When the shell plane stress plasticity flag is set to 0 on card 1 of the shell property type definition, a radial return 
plasticity analysis is performed. Thus, Step 5 of the stress computation is:  

The hardening parameter is calculated using the material stress-strain curve: 

( ) ( )tbat
np

yield εσ +=       EQ. 5.3.10.28 

E
t yieldvmp σσ

ε
−

=∆ɺ  

where pεɺ  is the plastic strain rate.  

The plastic strain, or hardening parameter, is found by explicit time integration:  

( ) ( ) tttt ppp ∆+=∆+ εεε ɺ       EQ. 5.3.10.29 

Finally, the plastic stress is found by the method of radial return. In case of plane stress this method is 
approximated because it cannot verify simultaneously the plane stress condition and the flow rule. The following 
return gives a plane stress state: 

el
ij

vm

yieldpa
ij σ

σ
σ

σ =        EQ. 5.3.10.30 

Iterative algorithm 

Iplas=1 

If flag 1 is used on card 1 of the shell property type definition, an incremental method is used. Step 5 is 
performed using the incremental method described by Mendelson [1]. It has been extended to plane stress 
situations. This method is more computationally expensive, but provides high accuracy on stress distribution, 
especially when one is interested in residual stress or elastic return. This method is also recommended when 
variable thickness is being used. After some calculations, the plastic stresses are defined as:  
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where ( )tt

E
r

yield

p

∆+
∆=∆

σ
ε

2
     EQ. 5.3.10.34 

The value of Pε∆  must be computed to determine the state of plastic stress. This is done by an iterative 

method. To calculate the value of Pε∆ , the von Mises yield criterion for the case of plane stress is introduced: 

( )ttyieldxyyxyx ∆+=+−+ 2222 3 σσσσσσ      EQ. 5.3.10.35 

and the values of σx, σy, σxy and σyield are replaced by their expression as a function of Pε∆  (EQS 5.3.8.31 to 
5.3.8.34), with for example:  

( ) ( )ttbatt
np

yield ∆++=∆+ εσ      EQ. 5.3.10.36 

and: 

( ) ( ) ppp ttt εεε ∆+=∆+       EQ. 5.3.10.37 

The nonlinear equation 5.3.10.35 is solved iteratively for Pε∆  by Newton's method using three iterations. This 

is sufficient to obtain Pε∆  accurately.  

5.3.10.4 Plastic plane stress with Hill’s criterion 

In the case of Hill’s orthotropic criterion, the equivalent stress is given by: 
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EQ. 5.3.10.14 is then written as: 

 

[ ]{ } { }∗
+ = σσ 1nB          EQ. 5.3.10.39 
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Changing the stress variables to { }σ : 

{ } [ ]{ }σσ Q=    EQ. 5.3.10.40 
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 is the Jacobian of [Q]. EQ. 5.3.10.40 is now written as: 

[ ]{ } { }∗
− = σσ 1nB    EQ. 5.3.10.42 

This will enable to give explicitly the expression of the yield surface EQ. 5.3.10.15: 
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The derivative of 1+nf  is carried out in order to use the Newton-Raphson method: 
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n f

fεε    EQ. 5.3.10.44 

5.3.11 Calculation of forces and moments 

5.3.11.1 Integration points throughout the thickness 

The integration is performed using n equally spaced integration points throughout the thickness. The method 
used assumes a linear variation of stresses between integrations points: 
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2 σ        EQ. 5.3.11.2 

Table 5.3.1 compares the coefficients used to the classical Newton quadrature in case of 3 integration points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.11.2 Global plasticity algorithm 

In the case of global plasticity, the forces and moments are computed directly. The algorithm is activated by 
specifying the number of integration points through the thickness as zero. The first step is an obvious elastic 
calculation: 

{ } ( ){ } { } tEtel ∆+∑=∑ ɺL       EQ. 5.3.11.3 

The yield criterion used is the uncoupled Iliouchine form [13]: 
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2222 3 xyyxyx NNNNNN +−+=      EQ. 5.3.11.5 

2222 3 xyyxyx MMMMMM +−+=      EQ. 5.3.11.6 
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An extension of Iliouchine criterion for isotropic hardening is developed here. The yield surface can be 
expressed as: 
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









































=
A

h
sym

A
h

hs

A
h

F

22

22

6

1
6

32

11

γ

γ
   EQ. 5.3.11.8 

and 
{ } [ ]{ }
{ } [ ]{ }MAN

MAN
s t

t

=          EQ. 5.3.11.9 

Where β  and γ  are scalar material characteristic constants, function of plastic deformation. They can be 

identified by the material hardening law in pure traction and pure bending: 

In pure traction: ( ) ( )
0

20
2

2

0
y

p
y

yh

N
f

σ
εσ

ββσ =→=−=      EQ. 5.3.11.10 

In pure bending: ( ) ( )
6/

0
6/

2

20
22

2

h

M

h

M
f

y
y σ

γβσ
γ

=→=−=     EQ. 5.3.11.11 

If no hardening law in pure bending is used, γ  is simply computed by
p

y

p
y

E

E

εσ

εσ
γ

+

+
=

/
2
3

/
 varying between 1.0 

and 1.5. 

 

The plasticity flow is written using the normality law: 
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{ }
{ } { }

{ }

[ ] { }
{ }







=









∂

∂=








Χ M

N
Fd

M

N
f

d
d

d

p

p λλ
ε

2    EQ. 5.3.11.12 

The equivalent plastic deformation Pε  is proportional to the plastic work. Its expression is the same as in the 
case of traction: 

{ }
{ }

{ }
{ } ( )200 2 βσλ

χ
ε

εβσ y

t

p

pp
y d

M

N

d

d
d =

















=    EQ.5.3.11.13 

This leads to: 

βλσε 02 y
p dd =   and   

p

y

d
H

d ε
σ

β
0

=    EQ. 5.3.11.14 

where H is the plastic module. The derivative of function f in EQ. 5.3.11.7 is discontinuous when 

{ }tN { }{ }MA =0. This can be treated when small steps are used by putting s=0 as explained in [87].  

Then the derivative of f with respect to Pdε  (
Pd

f

ε∂
∂

) is carried out. The derived equation is nonlinear in 

internal efforts and is resolved by Newton-Raphson: 

{ }
{ }

{ }
{ } [ ][ ] { }

{ }
11

2
+∗+ 








−
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
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

=
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






nn
M

N
FDd

M

N

M

N
λ    EQ. 5.3.11.15 

where [D] is the elastic stiffness matrix and: 

{ }
{ }

{ }
{ } [ ] { }

{ }






−





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=
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






χ
ε

d

d
D

M

N

M

N

n*

   EQ. 5.3.11.16 

5.3.12 QPH, QPPS, QEPH and QBAT shell formulations 
QPH shell is the Belytschko Leviathan [17] shell for linear models or quasi-static analysis is identical to a QPPS 
shell analysis, only one difference being explained in section 5.3.12.2. 

The QPPS shell is a new One-point Quadrature, General Nonlinear Quadrilateral Shell Element with Physical 
Stabilization. This shell is a Belytschko Leviathan [17] shell modified by Zeng and Combescure [15]. 

The physical stabilization is applied which enables the explicit evaluation of the stabilizing forces based on the 
general degenerated shell formulation and which does not require any input parameters. An optimized choice of 
the moduli is made in order to compute the stabilized forces for nonlinear material so that element's behavior is 
improved with respect to similar physical stabilization elements. The cost efficiency of the element is 
demonstrated by numerical examples, as compared with a fully-integrated 4-node element. 

The QEPH shell is a new improved element with respect to QPH,QPPS. The improvements will be explained in 
section 5.3.12.2. As the QEPH is very efficient, it replaces QPH,QPPS in the applications. 

The QBAT shell is a new fully-integrated 4-node element based on Q4γ 24 shell of Batoz and Dhatt [40] as 

discussed in section 5.3.9.4. 

The general formulation of the degenerated continuum quadrilateral shell (for which all these elements used) is 
given in the section 5.3.12.1. The difficulties in evaluating the stabilized stiffness are also described. Section 
5.3.12.2 presents the detailed formulations for the one-point quadrature shell element based on the general 
formulation, and compares it with that of Belytschko and Leviathan.  
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5.3.12.1 Formulations for a general degenerated 4-node shell 

The following formulations of degenerated quadrilateral shells are based on the successful full integration 
element MITC4 developed by Dvorkin-Bathe [32] and Q4γ 24 developed by Batoz and Dhatt [40]; they are 

suitable for both thin and thick shells and are applicable to linear and nonlinear problems. Their main feature is 
that a classical displacement method is used to interpolate the in-plane strains (membrane, bending), and a 
mix/collocation (or assumed strain) method is used to interpolate the out-plane strains (transverse shear). Certain 
conditions are also specified: 

• They are based on the Reissner-Mindlin model, 

• In-plane strains are linear, out-plane strains(transverse shear) are constant throughout the thickness, 

• Thickness is constant in the element (the normal and the fiber directions are coincident), 

• 5 DOF in the local system (i.e. the nodal normal vectors are not constant from one element to 
another). 

 

A - Notational conventions 

• A bold letter denotes a vector or a tensor. 

• An upper case index denotes a node number; a lower case index denotes a component of vector or 
tensor. 

• The Einstein convention applies only for the repeated index where one is subscript and another is 
superscript, e.g.:  

     ∑= I
I

I
I xNxN . 

• {} denotes a vector and [ ] denotes a matrix. 

 
B - Geometry and kinematics 

Figure 5.3.11 - Coordinate systems 

 

X 
Y 

Z 

ξ

ηζ

Mid-plan 
a 

1 2 

3 
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n
�

 
The geometry of the 4-node degenerated shell element, as shown in the Fig 5.3.11., is defined by its mid-surface 

with coordinates denoted by pX  interpolated by the node coordinates 
IX (I=1,4): 

( ) I
INp X,X =ηξ        EQ. 5.3.12.1 

where ( )ηξ ,IN  are the bilinear isoparametric shape functions, given by: 

( ) ( )( ) 4/11, ηηξξηξ IIIN ++=      EQ. 5.3.12.2 

 

 

A generic point q within the shell is derived from point p on the mid-surface and its coordinate along the normal 
(fiber): 
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( ) nzXp,,Xq ⋅+=ζηξ   with  2
ζaz =      EQ. 5.3.12.3 

where a is the shell thickness. 

The transformation between the Cartesian system and the Natural system is given by the differential relation (in 
matrix form): 

{ } [ ] { }[( { } { }]{ } [ ]{ }ξξηξ dFdnnzFdXq =+= 0,,0    EQ. 5.3.12.4 

with 

[ ] { }{ } { }[ ] ( ) ( ) I
I,p,2

I
I,p,12

a
210 XNXg,XNXg;nggF ηηξξ ηξηξ ===== ,,  

F is the gradient tensor which is related to the Jacobian tensor [ ] [ ]tFJ = . 

With 5 DOF at each node I (three translational velocities I
i

I vv →  and two rotational velocities ( )I
i

I ωω → , 

the velocity interpolation is given by the Mindlin model: 

( ) ( )( )II
Ipq zβv,Nzβv,,v +=+= ηξζηξ      EQ. 5.3.12.5 

nβ ×= ω  

where β  and ω  are the rotational velocity vectors of the normal: 21122211 tttβtββ ωω −=+=  

and ( )n,t,t 21  is base of the local coordinate system. 

EQ. 5.3.12.5 can be written also by: 

( ) 1,3i;tNtNzvNv I
1i

I
2I

I
2i

I
1I

I
iIi =+−+= ωω  

This velocity interpolation is expressed in the global system, but ω I must be defined first in the local nodal 
coordinate system to ensure Mindlin's kinematic condition. 

  

C - Strain-rate construction 

The in-plane rate-of-deformation is interpolated by the usual displacement method. 

The rate-of-deformation tensor (or velocity-strains) ( ) 2/T
tLLD += t  is defined by the velocity gradient tensor 

L: 

{ } [ ]{ } [ ][ ] { } [ ]{ } [ ][ ][ ] { }dXqQLQdXqLdXqFLdLdv T
tq ==== −1

ζζ ξ   EQ. 5.3.12.6 

with [ ] { }{ }{ }[ ]nttQ 21= . 

The Reissner-Mindlin conditions 0=ζε  and 0=ζσ  requires that the strain and stress tensors are computed in 

the local coordinate system (at each quadrature point). 

After the linearization of Lt with respect to z, the in-plane rate-of-deformation terms are given by: 

[ ] [ ] [ ]1022 sst LzLL +=×  

with the membrane terms: 

[ ] [ ][ ]010 CCLs =  

 

 

the bending terms: 
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[ ] [ ] [ ] [ ] 








⋅⋅
⋅⋅

+





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




⋅⋅−
⋅−⋅

+=
ηξ

ηξ

ξξ

ηη

β,tβ,t

β,tβ,t
C

n,gn,g

n,gn,g
CL2HL

11

11
012

12

1s0s1   EQ. 5.3.12.7 

where the contravariant vectors ( )1,2αgα = , dual to αg , satisfy the orthogonality condition: ⋅
αg α

ββ δ=g  

(Kronecker delta symbol); ( )ηξ ,H  is the average curvature: ( )ηξ n,gn,g2H 21
⋅⋅ +−=  

[ ] 








⋅⋅
⋅⋅

=
2

2
2

1

1
2

1
1

0
gtgt

gtgt
C  and [ ] 









⋅⋅
⋅⋅

=
ηξ

ηξ

,vt,vt

,vt,vt
C

p2p2

p1p1
1    EQ. 5.3.12.8 

The curvature-translation coupling is presented in the bending terms for a warped element (the first two terms in 
last EQ.) 

The out-plane rate-of-deformation (transverse shear) is interpolated by the “assumed strain” method, which is 
based on the Hu-Washizu variation principle. 

If the out-plane rate-of-deformation is interpolated in the same manner for a full integration scheme, it will lead 
to “shear locking”. It is known that the transverse shear strains energy cannot vanish when it is subjected to a 
constant bending moment. Dvorkin-Bathe's [32] mix/collocation method has been proved very efficient in 
overcoming this problem. This method consists in interpolating the transverse shear from the values of the 
covariant components of the transverse shear strains at 4 mid-side points. i.e.: 

 ( ) ( )[ ] 2/11 21 AA
ξξξ γηγηγ ++−=     EQ. 5.3.12.9 

 ( ) ( )[ ] 2/11 21 BB
ηηη γξγξγ ++−=     EQ. 5.3.12.10 

Where 
α

η
α

ξ γγ BA ,  are the values of the covariant components at 4 mid-side points which vanish under a 

constant bending moment (see Figure 5.3.12).  

Figure 5.3.12 - Covariant components at 4 mid-side 

 
 

D - Special case for one-point quadrature and the difficulties in 
stabilization 

The formulations described above are general for both the full integration and reduced integration schemes. For a 
one-point quadrature element, you have the following particularities: 

The quadrature point is often chosen at ( )0,0 == ηξ . The derivatives of the shape functions are: 

( ) 4/, ηξξ III hN +=    ( ) 4/, ξηη III hN +=     EQ. 5.3.12.11 

Where ( )1111 −−=Ih  . 
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This implies that all the terms computed at the quadrature point are the constant parts with respect to ( )ηξ , , and 

the stabilizing terms (hourglass) are the non-constant parts. 

The constant parts can be derived directly from the general formulations at the quadrature point without 
difficulty. The difficulties in stabilization lie in correctly computing the internal force vector (or stiffness 
matrices): 

( )∫
Ω

+===Ω⋅= intintint 0   stab
t ffdBf ηξσ     EQ. 5.3.12.12 

It would be ideal if the integration term int
stabf  could be evaluated explicitly. But such is not the case, and the 

main obstacles are the following: 

For a non-coplanar element, the normal varies at each point so that it is difficult to write the non-constant part of 
strains explicitly. For a physically nonlinear problem, the non-constant part of stress is not generally in an 
explicit form. Thus, simplification becomes necessary. 

 

5.3.12.2 Fully-integrated shell element QBAT 

QBAT is a fully-integrated shell element based on the general formulation described above. In the surface of 
each element, 4 Gauss points are used to evaluate the nodal forces. 

The main modifications with respect to Q4γ 24 shell element [40] are the following: 

• Reduced integration for in-plane shear (constant) to avoid locking. 

• Co-rotational coordinate system is used and the stresses are evaluated in 4 local systems at each Gauss 
points.. 

5.3.12.3 The new one-point quadrature shell element 

In this section, a one-point quadrature shell element formulation will be developed from the general formulation 
described in the previous section. It is based on the Physical Stabilization method which explicitly computes the 
stabilization terms in making some simplifications. 

The following formulations will be written in the local coordinate system [t1 t2 n] (the circumflex in the co-
rotational system notation has been omitted for convenience). 

  
A - Kinematic approximation 

The velocity interpolation using the nodal tangent vectors ( I
2

I
1 t,t ) complicates the strain computation, especially 

for transverse shear which is used mainly as a penalty function. To be consistent with the one-point quadrature 
approach, the kinematic approximation is performed by: 

( )[ ]I
i

I
i

I
iIi zvNv 2112 ωδωδ +−+=      EQ. 5.3.12.13 

where I
iω  (i=1,2) is the nodal rotation velocity around I

it . I
iω  can be computed by a projection scheme by : 

( ) ( ) IIIIIII nPnn ωωωω =⋅−=      EQ. 5.3.12.14 

The projection consists in eliminating the nodal drilling rotations in order to reinforce Mindlin's kinematic 
condition at the nodes. It has been pointed out [18] that without this projection, the element is too flexible and 
cannot pass the Twisted Beam test. 

This projection has a drawback of changing the invariance property to rigid body motion, i.e.: a warped element 
being invariant to rigid body rotation will now strains under to rigid body rotation if the drill projection is 
applied. To overcome this problem, a full projection proposed by Belytschko-Leviathan [66] which free either 
drilling rotation or rigid motion should be used. This full projection is only used for QEPH element. 



RADIOSS THEORY Version 2017  ELEMENT LIBRARY 
 

01-Jan-2017 55

 
B - In-plane strain-rate construction 

Constant part 

It is useful to write the shape functions in Belytschko-Bachrach's mixed form: 

( ) φγξη I
y
yI

x
xIII bbyxN +++∆=,,      EQ. 5.3.12.15 

with: ( ) ( )[ ] ( )1,1,1,1; =−−=∆ IyI
I

IxI
I

III tbytbxtt  

( ) ( ) ( )( )2//;/ 3124134213423124 fjfifijAxxxxbAyyyyb yIxI −===  

( ) ( )[ ] ;;4/ ξηφγ =−−= yI
J

JxI
J

JII byhbxhh  

A is the area of element. 

The derivation of the shape functions is given by: 

( )yxbN III ,,, =+= αφγ ααα  

where: 

ξηξηηξφ

ξηξηηξφ
1

22
1

21

1
12

1
,

,,,

,,
11

−−

−−

+=+=

+=+=

JJ

JJ

yyy

xxx
    EQ. 5.3.12.16 

The advantage of this shape function form is that a linear field expressed with Cartesian coordinates and a 
bilinear field expressed with Natural coordinates is decomposed so that the constant part is directly formulated 
with the Cartesian coordinates, and the non-constant part is to be approached separately. 

The in-plane rate-of-deformation (decomposed on membrane and bending) is given by: 

{ } { } { } [ ]{ }I
nI

bm vBDzDD =+=      EQ. 5.3.12.17 

with: 

  [ ] [ ] .; >>=<<+= I
y

I
x

I
z

I
y

I
x

I
n

b
I

m
II vvvvBzBB ϖϖ  

The development of the general formulations leads to the constant part, denoted by superscript 0, of the matrix 

 [BI]: 
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=
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B    ( )[ ] ( )[ ]













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−+=

yIxI
c
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c
yI

yI
c
yI

xI
c
xI

m
I

b
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bb
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BHB

0

000
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2
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 EQ. 5.3.12.18 

with 

><>=< 3412
2 ;;;/4 yyyy

c
xI bbbbAzb γ  

><>=< 1234
2 ;;;/4 xxxx

c
yI bbbbAzb γ  

The parameter I
I zz γγ =  is a measure of the warping of the element. 
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The first term ( )[ ]0
2 m

IBH  is neglectable. You have verified that the order of ( )[ ]0
2 m

IBH  is ε  times the 

second term of ( )[ ]0bB  with ( )( ) ,2//2 3434 jiij fffyx +==ε  which vanishes when the element is 

rectangular. Thus, this term is not used in the program. 

The constant part of the in-plane rate-of-deformation formulation without the H term is consistent with the result 
of Belytschko's family shell element [24], [17], though this part has been obtained in a very different manner. 
Letellier has given the same result in his thesis [43], and studies were also made of the quadratic terms with 
respect to z. 

Non-constant part 

The main simplification for the non-constant part formulation, in order to overcome the difficulties described 
above, is the following: 

The element is considered to be flat. 

In this case, the Jacobian matrix is written as: 

[ ] [ ] [ ]








=

















==
JJa

J

JJa

yx

yx

FJ t

2/0

0

2/00

0,,

0,,

0
0

0 ηη

ξξ

   EQ. 5.3.12.19 

with the determinant J  of the in-plane Jacobian: 

[ ] ηξ 210det JJJJJ ++==       EQ. 5.3.12.20 

and: 

( )( ) ( )( )[ ] 4/16/0 AyxyxJ I
I

I
I

I
I

I
I =−= ξηηξ  

( )( ) ( )( )[ ] 16/1
I

I
I

I
I

I
I

I yxhyhxJ ξξ −=  

( )( ) ( )( )[ ] 16/2
I

I
I

I
I

I
I

I yhxyxhJ ηη −=  

The inverse of the in-plane Jacobian matrix can be expressed explicitly: 

[ ] ( ) ( )
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
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



=
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J
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ηξξη
ηξξη

ηξ
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4

1
,,

,,1
,,

,,
 EQ. 5.3.12.21 

You can now write the non-constant part, denoted by superscript H, of the matrix [BI] for in-plane rate-of-
deformation: 

( )[ ] ( )[ ]
















−
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

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,,
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;
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φγφγ
φγ

φγ

φγφγ
φγ

φγ
  EQ. 5.3.12.22 

It is shown in [16] that the non-constant part of membrane rate-strain does not vanish when a warped element 

undergoes a rigid body rotation. Thus, a modified matrix ( )[ ]Hm
IB  is chosen: 

 ( )[ ]
( )
















+
=

xyIyxIxIyI
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B

,,,,

,,0

,0,

φφφγφγ
φφγ
φφγ

γ

γ

γ

   EQ. 5.3.12.23 

This matrix is different from the Belytschko-Leviathan correction term added at rotational positions, which 
couples translations to curvatures as follows: 
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  EQ. 5.3.12.24 

This will lead to 'membrane locking' (the membrane strain will not vanish under a constant bending loading). 
According to the general formulation, the coupling is presented in the bending terms not in the membrane terms, 
yet the normal translation components in (BI

m)i3 do not vanish for a warped element due to the tangent vectors 
t i ),( ηξ  which differ from t i (0,0). 

  
C - Out-plane strain-rate construction 

The out-plane rate-of-deformation (transverse shear) is interpolated by the Dvorkin-Bathe method, whose closed 
form is given by Belytschko-Leviathan: 
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ϖ      EQ. 5.3.12.25 

where: [ ]( ) [ ]( ) [ ]( )ξηηζ ξη
IcIcIc BBB +=,  
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 EQ. 5.3.12.26 

and ( ) ( ) ( ) ( ) ξξηη ξξηη 00
; IcI

H

IcIcI

H

Ic BBBB ==  

The straightforward form of [BIc] is obtained using one additional simplification: 

( ) ( ) ( ) ( )0,0,0,0, ,,,, xxxx ηηξηξηξξ ==  

which is true for a parallelogram element. Although this simplification is not necessary, it is justified by the fact 
that the transverse shear terms serve mainly as a penalty function.  

 

D - Explicit integration of the nodal internal force vector  

Elastic case 

The elementary nodal force vector is computed by: 

{ } [ ] [ ][ ]{ } eJ
nJ

t

ve II dvvBCBf ∫=int  

Taking advantage of substantial orthogonality between: 

• the constant in-plane fields along with the non-constant ones 

• the membrane and the bending 

• the in-plane fields and the out-plane fields 

• the decomposed non-constant out-plane fields 
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resulting in: 

{ } ( ){ } ( ){ }H

III fff int0intint +=  

With ( ){ }0int
If  the constant part being computed with one-point quadrature, and 

( ){ } ( )[ ] [ ]( )[ ]{ } eJ
n

H
J

t

ve

H
I

H

I dvvBCBf ∫=int  

It can be shown in the last equation that only the following scalar functions need to be integrated: 

∫∫∫ === eyyeyyeyxexyexxexx dAAHdAAHdAAH ,,,,,, ,, φφφφφφ    EQ. 5.3.12.27 

These can be evaluated explicitly. 

Defining 6 hourglass generalized rate-of-deformation qɺ  by: 

1

1
membrane:

m I I
x I x xI z

m I I
y I y yI z

q v z b v

q v z b v

γ
γ

 = +
 = +

ɺ

ɺ
     EQ. 5.3.12.28 

bending :
b I
x I y

b I
y I x

q

q

γ ϖ
γ ϖ

 =
 =

ɺ

ɺ
      EQ. 5.3.12.29 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

4
shear :

4

s I I I I I I I
x I z I I I I x I I I I y

s I I I I I I I
y I z I I I I x I I I I y

q h v y h y t x h x t

q h v y h y t x h x t

ξ η ϖ ξ η ϖ

η ξ ϖ η ξ ϖ

    = − + + +    


   = − + + +    

ɺ

ɺ

 EQ. 5.3.12.30 

The rate-of-deformations will be written explicitly. 

The rate form of the constitutive relation is written as (stress plane for in-plane terms): 

C:Dσ =ɺ  

With the assumption: the spin is constant within the element, the objectivity principle will be satisfied. The 
incremental computation is performed with the hourglass generalized rate-of-deformation qɺ , i.e.: 

( ) ( ) tqqq
n

nn ∆+=
++

2

11 ɺ  

Noting that if αφ,  is considered as constant over a time step, it is equivalent to the incremental stress 

computation. 

 

Physical nonlinear case 

You will now consider an elastoplastic problem.  

The elementary nodal internal force vector is now computed by: 

{ } [ ] { } e

ve

t
II dvBf ∫= σint  

The constitutive relation is written by either a tangent form: :DCσ
t=ɺ , or a projection form: ( ),...σPσ

e= , 

where ( ),...σC t  is the history-dependent tangent tensor ; { } { } [ ]{ } tDC nn
e
n ∆+= ++ 2/11 σσ  is the trial stress, 

and the function P consists of projecting the trial stress on the updated yield surface. 

The decomposed form of the last equation is written: 

{ } ( ){ } ( ){ }H

III fff int0intint +=  
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The constant part is computed by integration at each integration point through the thickness. 

The stabilization part will be approached by relying on two hypotheses: 

• Keep the same orthogonalities as in the elastic case, and 

Use the unidimensional tangent modulus ( )ζtE  to evaluate the non-constant rate-stress, i.e.: 

{ } ( )( )[ ]{ }H
t

H DCEE /ζσ =ɺ       EQ. 5.3.12.31 

where E is the Young's modulus and [ ]C  is the matrix of elastic moduli. 

Thus, the elastic case easily extends to the nonlinear case. 

The incremental computation with the hourglass generalized rate-of-deformation qɺ  becomes: 

( ) ( ) tqqqmembrane m
nmn

m
n

m ∆+= ++ 2/11: ɺλ     EQ. 5.3.12.32 

( ) ( ) tqqqbending b
nbn

b
n

b ∆+= ++ 2/11: ɺλ      EQ. 5.3.12.33 

( ) ( ) tqqqshear s
nn

s
n

s ∆+= ++ 2/11: ɺ      EQ. 5.3.12.34 

Where ( )ζtE  is obtained by the constant stress incremental computation along the thickness and ( ) EEt =ζ  

in the elastic zone, and ttm EEE ;/=λ  is the average value of ( )ζtE  and ( ) EEtb /min ζλ = . 

For the QPH shell, λm = 1  

The key orthogonalities has been maintained without any significant deterioration in performance, although the 
first two orthogonalities might have been slightly violated. In fact, it is simply due to these orthogonalities that a 
one-point quadrature element dramatically reduces the computation cost; otherwise you return to the full 
integration scheme. 

Most of the physical stabilization elements have incorporated the following assumption: 

The material response is constant within the element. 

There are two alternatives to this assumption: 

• to take the elastic matrix [ ]C directly: 

{ } { } [ ] ( ){ } { } [ ] ( ){ } ( ){ } 000 =→+=−+= HPHHP CC εεσεεσσ ɺɺɺɺɺɺɺ  

which means that the plastic rate-of-deformation { }Pεɺ  is constant within the element; or 

• to take the tangent matrix [Ct] ( === ζηξ ,0  constant):  

Since the components of [Ct] are generally functions of the updated stress (precisely, the stress deviator for an 
elastoplastic problem with an associative flow rule, which means that the stress is constant within the element. 

Neither of these alternatives is theoretically perfect. Let us note that the [C] option results in a contradiction with 
the stress computation (which yields different results for the constant part and the non-constant part); it is more 
expensive and the tangent form is not generally used for constant stress computations within an explicit program. 
Hence, the approximation based on the above assumption is not necessary. 

The choice of the moduli for the nonlinear case has not been studied for Belytschko-Leviathan's element [17], 
and it has been shown that this choice has little effect on the result of the “Cylindrical panel test”. In [30], the 
elastic tangent matrix has been used for the evaluation of the stabilizing forces. 

QPH,QPPS have shown often stiffer behaviors and sometimes have certain numerical problems in crash 
simulations. 
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5.3.12.4 Advanced elasto-plastic hourglass control 

QEPH (Quadrilateral ElastoPlastic Physical Hourglass Control) element 

With one-point integration formulation, if the non-constant part follows exactly the state of constant part for the 
case of elasto-plastic calculation, the plasticity will be under-estimated due to the fact that the constant 
equivalent stress is often the smallest one in the element and element will be stiffer. Therefore, defining a yield 
criterion for the non-constant part seems to be a good idea to overcome this drawback. 

From EQ. 5.3.12.16 and EQ. 5.3.12.21, you have the rate of stresses of non-constant part: 
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ɺɺ    EQ. 5.3.12.35 

Where bm,=α  corresponds to the membrane and bending terms respectively. Note that the shear terms are 

eliminated to avoid shear locking. The transverse shear terms can also be written as the same way: 
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ɺ     EQ. 5.3.12.36 

You can now redefine 12 generalized hourglass stresses by integrating their rate ones, and the stress field can be 
expressed by: 

Membrane, bending: { } { } { } { }
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Even the redefinition for shear is not necessary as it is not included in the plastic yield criterion, but the same 
stress calculation as the constant part with the updated Lagrangian formulation is always useful when large strain 
is involved. 

 

Plastic yield criterion:  

The von Mises type of criterion is written by: 

0),,( 22 =−= yeqf σζηξσ    EQ. 5.3.12.37 

for any point in the solid element, where yσ  is evaluated at the quadrature point. 

As only one criterion is used for the non-constant part, two choices are possible: 

• taking the mean value, i.e.: ( ) Ω
Ω

== ∫
Ω

dff eqeqeq σσσ 1
;  

• taking the value by some representative points, e.g. eight Gausse points 

The second choice has been used in this element. 
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Elasto-plastic hourglass stress calculation:  

The incremental hourglass stress is computed by: 

• Elastic increment 

( ) ( ) [ ]{ } tC HH

ni
trH

ni ∆+=+ εσσ ɺ
1  

• Check the yield criterion  

• If 0≥f , the hourglass stress correction will be done by un radial return 

( ) ( )( )fP trH

ni
H

ni ,11 ++ = σσ  

5.3.13 Three-node shell elements  
As for the four node shell element, a simple linear Mindlin Plate element formulation is used. Likewise, the use 
of one integration point and rigid body motion given by the time evolution of the local reference frame is 
applied. There is no hourglass mode in case of one integration point. 

5.3.13.1 Local Reference Frame 

The local reference frame for the three node shell element is shown in Figure 5.3.13.  

Figure 5.3.13 - Node Shell Local Reference Frame 

 
The vector normal to the plane of the element is defined as:  

21

21

gg

gg
n

×
×=        EQ. 5.3.13.1 

The vector defining the local x direction is defined as edge 1-2:  

1

1
1 g

g
t =    EQ. 5.3.13.2 
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Hence, the vector defining the local y direction is found from the cross product of the two previous vectors:  

12 tnt ×=    EQ. 5.3.13.3 

5.3.13.2 Time Step 

The characteristic length for computing the critical time step is defined by: 

 ( )31,23,12max

2area
L =      EQ. 5.3.13.4 

Three Node Shell Shape Functions 

The three node shell has a linear shape functions defined as: 

 ycxba 1111 ++=φ       EQ. 5.3.13.5 

 ycxba 2222 ++=φ       EQ. 5.3.13.6 

 ycxba 3333 ++=φ       EQ. 5.3.13.7 

 

These shape functions are used to determine the velocity field in the element: 

 ∑
=

=
3

1I
xIIx vv φ       EQ. 5.3.13.8 

 ∑
=

=
3

1I
yIIy vv φ       EQ. 5.3.13.9 

 ∑
=

=
3

1I
zIIz vv φ       EQ. 5.3.13.10 

 ∑
=

=
3

1I
xIIx ωφω       EQ. 5.3.13.11 

 ∑
=

=
3

1I
yIIy ωφω       EQ. 5.3.13.12 

 ∑
= ∂

∂=
∂
∂ 3

1I
xI

Ix v
xx

v φ
      EQ. 5.3.13.13 

 ∑
= ∂

∂=
∂
∂ 3

1I
xI

Ix v
yy

v φ
      EQ. 5.3.13.14 

5.3.13.4 Membrane Behavior 

The method used to calculate the membrane behavior and the membrane strain rates is exactly the same as that 
used for four node shell elements (see section 5.3.6.1).  

5.3.13.5 Bending Behavior 

The bending behavior and calculation of the bending strain rates (or curvature rates) is the exact same method 
used for four node shell elements (see section 5.3.6.2).  
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5.3.13.6 Strain Rate Calculation 

The strain rate calculation for the three node shell is the same as the method used for the four node shell. 
However, only three nodes are accounted for. This makes the vectors and matrices smaller. The overall 
membrane strain rate is calculated by: 

 { } { }xyyxm eeee ɺɺɺɺ 2,,=       EQ. 5.3.13.15 

 { } { }332211 ,,,,, yxyxyxm vvvvvvv =      EQ. 5.3.13.16 

 { } [ ] { }mmm vBe =ɺ       EQ. 5.3.13.17 

where the [ ]mB  matrix of shape function gradients is defined as: 
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     EQ. 5.3.13.18 

where 03 =
∂
∂

x

φ
 for a shell element. 

The overall bending strain or curvature rate is computed by: 

{ } { }yzzxxyyxb eekkke ɺɺɺɺɺɺ 2,2,2,,=       EQ. 5.3.13.19 

 { } { }321332211 ,,,,,,, zzzxyxyxyb vvvv ωωωωωω −−−=
ɺ

   EQ. 5.3.13.20 

  { } [ ] { }bmbb vBe =ɺ     EQ. 5.3.13.21 

where: 
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  EQ. 5.3.13.22 

5.3.13.7 Mass and Inertia 

The three node shell element is considered as an element with a lumped mass. Its mass is defined as: 

Atm ρ=         EQ. 5.3.13.23 

where: 

ρ  is the material density,  

t is the shell thickness,  
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A is the reference plane surface area.  

The mass moment of inertia about all axes is the same:  









+=

126

2 2tA
mI xx        EQ. 5.3.13.24 

 xxyyzz III ==       EQ. 5.3.13.25 

 0=xyI        EQ. 5.3.13.26 

When nodal masses need to be calculated, the distribution is determined by the shape of the element as shown in 
Figure 5.3.14.  

Figure 5.3.14 - Mass distribution  

 
The mass and inertia at node i are given by:  

IImm i
i

i
i π

α
π
α == ;       EQ. 5.3.13.27 

5.3.14 Composite Shell Elements  
There are three different element types that can be used for modeling composites. These are:  

• Type 9 Element Property - Orthotropic Shell  

• Type 10 Element Property - Composite Shell  

• Type 11 Element Property - Composite Shell with variable layers 

These elements are primarily used with the Tsai-Wu model (material law 25). They allow one global behavior or 
varying characteristics per layer, with varying orthotropic orientations, varying thickness and/or varying material 
properties, depending on which element is used. Elastic, plastic and failure modeling can be undertaken.  

5.3.14.1 Transformation matrix from global to orthotropic skew 

If the element reference is defined by the axes X, Y and the orthotropy directions by axes 1-2, write: 

Figure 5.3.15 - Fiber orientation  
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1α
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The strain-stress relation in orthotropy directions is written as: 

{ } [ ]{ }εσ C=        EQ. 5.3.14.4 
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      EQ. 5.3.14.5 

 122211 σσσσ =   ; 122211 εεεε =  EQ. 5.3.14.6 

The computed stresses are then projected to the element reference: 
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    EQ. 5.3.14.7 

5.3.14.2  Composite modeling in RADIOSS 

RADIOSS has been successfully used to predict the behavior of composite structures for crash and impact 
simulations in the automotive, rail and aeronautical industries. 

The purpose of this chapter is to present the various options available in RADIOSS to model composites, as well 
as some modeling methods. 

Modeling composites with shell elements 

Composite materials with up to 100 layers may be modeled, each with different material properties, thickness, 
and fiber directions. 

Lamina plasticity is taken into account using the Tsai-Wu criteria, which may also consider strain rate effects. 
Plastic work is used as a plasticity as well as rupture criterion. 

Fiber brittle rupture may be taken into account in both orthotropic directions. 

Delamination may be taken into account through a damage parameter in shear direction. 

Modeling composites with solid elements 

Solid elements may be used for composites. 

Two material laws are available:  

- Solid composite materials: one layer of composite is modeled with one solid element. Orthotropic 
characteristics and yield criteria are the same as shell elements (see above).  

- A honeycomb material law is also available, featuring user defined yield curves for all components of the stress 
tensor and rupture strain. 
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Solid + shell elements 

For sandwich plates, if the foam or the honeycomb is very thick, it is possible to combine composite shells for 
the plates and solid elements for the sandwich (see figure below).  

  

 

5.3.14.3 Element orientation  

A global reference vector v
�

 is used to define the fiber direction. The direction in which the material properties 
(or fiber direction) lay is known as the direction 1 of the local coordinate system of orthotropy. It is defined by 
the Φ  angle, which is the angle between the local direction 1 (fiber direction) and the projection of the global 
vector v

�
 as shown in Figure 5.3.16.  

Figure 5.3.16 - Fiber Direction Orientation 

 

The shell normal defines the positive direction for φ . For elements with more than one layer, multiple φ  angles 

can be defined.  

The fiber direction orientation may be updated by two different ways: 

1. constant orientation in local corotational reference frameconstant orientation in local isoparametric 
frame. The first formulation may lead to unstable models especially in the case of very thin shells (e.g. 

airbag modelling). In Figure 5.3.17 the difference between the two formulations is illustrated for the case of 
element traction and shearing. 
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Figure 5.3.17 - Fiber Direction Updating 

 

5.3.14.4 Orthotropic shells  

The type 9 element property set defines orthotropic shell elements. They have the following properties:  

1. Only one layer.  

2. Can have up to 5 integration points1 through the thickness. 

3. One orientation. 

4. One material property.  

  

5.3.14.5 Composite shell  

The type 10 element property set defines composite shell elements. They have the following properties:  

1. Up to 100 layers can be modeled.  

2. Constant layer thickness.  

3. Constant reference vector.  

4. Variable layer orientation.  

5. Constant material properties.  

Integration is performed with constant stress distribution for each layer. 

 

Formulation 2 

Formulation 1 

Formulation 1 

α 

F α 

α 
F 

Formulation 2 

Shear 

Traction 
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5.3.14.6 Composite shell with variable layers  

The type 11 element property set defines composite shell elements that allow variable layer thicknesses and 
materials. They have the following properties:  

1. Up to 100 layers can be modeled. 

2. Variable layer thicknesses.  

3. Constant reference vector.  

4. Variable layer orientation.  

5. Variable material properties, mi
2,3 

 

Integration is performed with constant stress distribution for each layer. 

 

  
1. Same integration rule as shells. 
2. Material number m i must be defined as law type 25 or type 27 (not both) in material input cards. 
3. Material given in the shell definition is only used for memory allocation, time step computation and interface 

stiffness. It must also be defined as law 25. 
 

5.3.14.7 Limitations  

When modeling a composite material, there are two strategies that may be applied. The first, and simplest, is to 
model the material in a laminate behavior. This involves using type 9 property shell elements. The second is to 
model each ply of the laminate using one integration point. This requires either a type 10 or 11 element.  

Modeling using the type 9 element allows global behavior to be modeled. Input is simple, with only the 
reference vector as the extra information. A Tsai-Wu yield criterion and hardening law is easily obtained from 
the manufacturer or a test of the whole material.  

Using the type 10 or 11 element, one model’s each ply in detail, with one integration point per ply and tensile 
failure is described in detail for each ply. However, the input requirements are complex, especially for the type 
11 element. 

Delamination is the separation of the various layers in a composite material. It can occur in situations of large 
deformation and fatigue. This phenomenon cannot be modeled in detail using shell theory. A global criterion is 
available in material law 25. Delamination can affect the material by reducing the bending stiffness and buckling 
force.  

  

5.3.15 Three-node triangle without rotational d.o.f. (SH3N6) 
The need of simple and efficient element in nonlinear analysis of shells undergoing large rotations is evident in 
crash and sheet metal forming simulations. The constant-moment plate elements fit this need. One of the famous 
concepts in this field is that of Batoz et al. [40] known under DKT elements where DKT stands for Discrete 
Kirchhoff Triangle. The DKT12 element [40], [105] has a total of 12 d.o.f’s. The discrete Kirchhoff plate 
conditions are imposed at three mid-point of each side. The element makes use of rotational d.o.f. at each edge to 
take into account the bending effects. A simplified three-node element without rotational d.o.f. is presented in 
[106]. The rotational d.o.f. is computed with the help of out-of-plane translational d.o.f. in the neighbor 
elements. This attractive approach is used in RADIOSS in the development of element SH3N6 which based on 
DKT12.  
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5.3.15.1 Strain computation 

Consider two adjacent coplanar elements with a common edge i-j as shown in Figure 5.3.19.  Due to out-of-
plane displacements of nodes m and k, the elements rotate around the side i-j. The angles between final and 

initial positions of the elements are respectively mα  and kα  for corresponding opposite nodes m and k. 

Assuming, a constant curvature for both of elements, the rotation angles mθ  and kθ  related to the bending of 

each element around the common side are obtained by: 

R

hk
k 2

=θ     and    
R

hm
m 2

=θ    EQ.5.3.15.1 

However, for total rotation you have: 

mkmk ααθθ +=+    EQ.5.3.15.2 

which leads to: 

( )
( )mk

kmk
k hh

h

+
+= ααθ        and      

( )
( )mk

mmk
m hh

h

+
+= ααθ    EQ.5.3.15.3 

 

Figure 5.3.18 – Computation of rotational d.o.f. in SH3N6 
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Consider the triangle element in Figure 5.3.19. The outward normal vectors at the three sides are defined and 
denoted n1, n2 and n3. The normal component strain due to the bending around the element side is obtained 
using plate assumption: 

( ) ( )

( ) ( )

( ) ( )
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   EQ.5.3.15.4 

The six mid-side rotations iα  are related to the out-of-plane displacements of the six apex nodes as shown in 

Figure 5.3.20 by the following relation: 
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   EQ.5.3.15.5 

where ( )321 hhh , ( )241 qhq , ( )352 rhr  and ( )163 shs  are respectively the heights of the 

triangles (1,2,3), (1,4,2), (2,5,3) and (3,6,1). 

 

Figure 5.3.19 – Normal vectors definition 
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The non-null components of strain tensor in the local element reference are related to the normal components of 
strain by the following relation (see [40] and [106] for details): 
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 EQ.5.3.15.6 

 

Figure 5.3.20 – Neighbor elements for a triangle 

 

 

5.3.15.2 Boundary conditions application  

As the side rotation of the element is computed using the out-of-plane displacement of the neighbor elements, 
the application of clamped or free boundary conditions needs a particular attention. It is natural to consider the 
boundary conditions on the edges by introducing a virtual and symmetric element outside of the edge as 

described in Figure 5.3.21. In the case of free rotation at the edge, the normal strain nkε  is vanished. From 

EQ.5.3.15.4, this leads to: 

mk αα −=    EQ.5.3.15.7 

In EQ.5.3.15.5 the fourth row of the matrix is then changed to: 
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The clamped condition is introduced by the symmetry in out-of-plane displacement i.e. wm=wk. This implies 

mk αα = . The fourth row of the matrix in EQ.5.3.15.5 is then changed to: 

[ ]000
32

1

1

2 1coscos
hhh −−− ββ

   EQ.5.3.15.9 

 

Figure 5.3.21 – Virtual element definition for boundary conditions application 
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5.4 Solid-Shell Elements 

Solid-shell elements form a class of finite element models intermediate between thin shell and conventional solid 
elements. From geometrical point of view, they are represented by solid meshes with two nodes through the 
thickness and generally without rotational degree-of-freedom. On the other hand, they account for shell-like 
behavior in the thickness direction. They are useful for modeling shell-like portions of a 3D structure without the 
need to connect solid element nodes to shell nodes (Figure 5.4.1). 
 

Figure 5.4.1 Solid-shell elements application 

 

 
 
The derivation of solid-shell elements is more complicated than that of standard solid elements since they are 
prone to the following problems: 

• Shear and membrane locking with the hybrid strain formulation [89], [90], the hybrid stress [91], and 
the Assumed and Enhanced Natural Strain formulations [92], [93], [94], and [95]. 

• Trapezoidal locking caused by deviation of mid-plane from rectangular shape [8]. 
• Thickness locking due to Poisson’s ratio coupling of the in-plane and transverse normal stresses [89], 

[90], [92], and [94]. 
 
Solid shell elements in RADIOSS are the solid elements with a treatment of the normal stresses in the thickness 
direction. This treatment consists of ensuring constant normal stresses in the thickness by a penalty method. 
Advantage of this approach with respect to the plane-stress treatment is that it can simulate the normal 
deformability and exhibits no discernible locking problems. The disadvantage is its possible small time step 
since it is computed as solid element and the characteristic length is determined often using the thickness. 

 

The solid-shell elements of RADIOSS are the following: 

• HA8: 8-node linear solid and solid-shell with or without reduced integration scheme, 

• HSEPH: 8-node linear thick shell with reduced integration scheme and physical stabilization of 
hourglass modes, 

• PA6: Linear pentahedral element for thick shells, 

• SHELL16: 16-node quadratic thick shell. 

The thick shell elements HA8 and HSEPH are respectively the solid elements HA8 and HEPH in which the 
hypothesis of constant normal stress through the thickness is applied by penalty method. The theoretical features 
of these elements are explained in section 5.1. The thick shell element SHELL16 is described hereby. 
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5.4.1 Thick Shell Element SHELL16  
The element can be used to model thick-walled structures situated between 3D solids and thin shells. The 
element is presented in Figure 5.4.2. It has 16 nodes with three translational d.o.f’s per each node. The element is 
quadratic in plane and linear through the thickness. The numerical integration through the thickness is carried out 
by Gauss-Lobatto schemes rise up to 9 integrations to enhance the quality of elasto-plastic behavior. The in-
plane integration may be done by a reduced 2x2 scheme or a fully integrated 3x3 points (Figure 5.4.3). A 
reduced integration method is applied to the normal stress in order to avoid locking problems. 

 

Figure 5.4.2 Thick Shell Element SHELL16 
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The distribution of mass is not homogenous over the nodes. The internal nodes receive three times more mass 
than the corner nodes as shown in Figure 5.4.4. 

 

Figure 5.4.3 Integration points for SHELL16 
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Figure 5.4.4 Mass distribution for SHELL16 element 
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5.5 TRUSS ELEMENTS (TYPE 2) 

Truss elements are simple two node linear members that only take axial extension or compression. Figure 5.5.1 
shows a truss element.  

Figure 5.5.1 Truss Element  

 

5.5.1 Property input  
The only property required by a truss element is the cross sectional area. This value will change as the element is 
deformed. The cross sectional area is computed using: 

( ) ( )
( )21 tv

ttArea
tArea

x∆−
∆−=

εɺ
       EQ. 5.5.1.1 

where ν  is the Poisson's ratio defined in the material law.  

 

5.5.2 Stability  
Determining the stability of truss elements is very simple. The characteristic length is defined as the length of the 
element, i.e. the distance between N1 and N2 nodes.  

  

( )
C

tL
t ≤∆          EQ. 5.5.2.1 

Where, ( )tL  is the current truss length and 
ρ
E

C =  is the sound speed. 

5.5.3 Rigid body motion  
The rigid body motion of a truss element as shown in Figure 5.5.2 shows the different velocities of nodes 1 and 
2. It is the relative velocity difference between the two nodes that produces a strain in the element, namely ex.  

Figure 5.5.2 Truss Motion  
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5.5.4 Strain  
The strain rate, as shown in Figure 5.5.2, is defined as:  

( )
x

eV

x

v xx
x ∂

⋅∂=
∂
∂=

��

ɺε       EQ. 5.5.4.1 

5.5.5 Material type  
A truss element may only be assigned two types of material properties. These are types 1 and 2, elastic and 
elasto-plastic properties respectively.  

5.5.6 Force calculation  
The calculation of forces in a truss element is performed by explicit time integration: 

( ) ( ) tFtFttF ∆+=∆+ ɺ       EQ. 5.5.6.1 

A generalized force-strain graph can be seen in Figure 5.5.3. The force rate under elastic deformation is given 
by: 

xx EAF εɺɺ =        EQ. 5.5.6.2 

where: 

E is the Elastic Modulus, 

A is the cross sectional area. 

In the plastic region, the force rate is given by:  

xtx AEF εɺɺ =        EQ. 5.5.6.3 

where Et is the gradient of the material curve at the deformation point.  

 

Figure 5.5.3 Force-Strain Relationship  

(a) without gap     (b) with gap 

 
 

In a general case, it is possible to introduce a gap distance in the truss definition. If gap is not null, the truss is 
activated when the length of the element is equal to the initial length minus the gap value. This results a force-
strain curve shown in Figure 5.5.3(b). 
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5.6 BEAM ELEMENTS (TYPE 3)  

RADIOSS uses a shear beam theory or Timoshenko formulation for its beam elements.  

This formulation assumes that the internal virtual work rate is associated with the axial, torsional and shear 
strains. The other assumptions are:  

• No cross section deformation in its plane.  

• No cross section warping out of its plane.  

With these assumptions, transverse shear is taken into account.  

This formulation can degenerate into a standard Euler-Bernoulli formulation (the cross section remains normal to 
the beam axis). This choice is under user control. 

5.6.1 Local coordinate system  
The properties describing a beam element are all defined in a local coordinate system.  

This coordinate system can be seen in Figure 5.6.1. Nodes 1 and 2 of the element are used to define the local X 
axis, with the origin at node 1. The local Y axis is defined using node 3, which lies in the local XY plane, along 
with nodes 1 and 2. The Z axis is determined from the vector cross product of the positive X and Y axes.  

The local Y direction is first defined at time t=0 and its position is corrected at each cycle, taking into account 
the mean rotation of the X axis. The Z axis is always orthogonal to the X and Y axes.  

Deformations are computed with respect to the local coordinate system displaced and rotated to take into account 
rigid body motion. Translational velocities V and angular velocities Ω  with respect to the global reference 
frame are expressed in the local frame.  

Figure 5.6.1 Beam Element Local Axis  

 

 

5.6.2 Beam element geometry  
The beam geometry is user-defined by:  

A: cross section area,  

Ix: moment of inertia of cross section about local x axis,  

Iy: moment of inertia of cross section about local y axis,  

Iz: moment of inertia of cross section about local z axis.  
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The moments of inertia about the y and z axes are concerned with bending. They can be calculated using the 
relationships:  

∫∫=
A

y dydzzI 2        EQ. 5.6.2.1 

∫∫=
A

z dydzyI 2        EQ. 5.6.2.2 

The moment of inertia about the x axis concerns torsion. This is simply the summation of the previous two 
moments of Ontario: 

zyx III +=         EQ. 5.6.2.3 

5.6.3 Minimum time step  
The minimum time step for a beam element is determined using the following relation: 

c

aL
t =∆         EQ. 5.6.3.1 

where: 

c is the speed of sound : ρ/E ,  
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5.6.4 Beam element behavior  
RADIOSS beam elements behave in four individual ways:  

• Membrane or axial deformation. 

• Torsion.  

• Bending about the z axis.  

• Bending about the y axis. 

5.6.4.1 Membrane behavior 
Membrane or axial behavior is the extension or compression of the beam element. The forces acting on an 
element are shown in Figure 5.6.2.  
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Figure 5.6.2 Membrane Forces 

 
The force rate vector for an element is calculated using the relation: 
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      EQ. 5.6.4.1 

where: 

E is the elastic modulus,  

l is the beam element length,  

xυ  is the nodal velocity in x direction.  

With the force rate equation, the force vector is determined using explicit time integration:  

( ) ( ) tFtFttF xxx ∆+=∆+ ɺ       EQ. 5.6.4.2 

5.6.4.2 Torsion 
Torsional deformation occurs when the beam is loaded with a moment M about the X axis as shown in Figure 
5.6.3.  

Figure 5.6.3 Torsional Loading 

 
 

The moment rate vector is computed by:  
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     EQ. 5.6.4.3 

where: 

G is the modulus of rigidity,  

xθɺ  is the angular rotation rate.  

The moment about the X axis is found by explicit time integration:  

( ) ( ) tMtMttM xxx ∆+=∆+ ɺ       EQ. 5.6.4.4 

5.6.4.3 Bending about z axis 
Bending about the z axis involves a force in the y direction and a moment about the z axis as shown in Figure 
5.6.4.  
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Figure 5.6.4 Bending about the z axis 

 
 

Two vector fields must be solved for forces and moments. The rate equations are: 
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   EQ. 5.6.4.5 
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  EQ. 5.6.4.6 

where 
( )

25

1144

Al

Iv z
y

+=φ ,  

ν is the Poisson's Ratio.  

The factor yΦ  takes into account transverse shear.  

The time integration for both is: 

( ) ( ) tFtFttF yyy ∆+=∆+ ɺ    EQ. 5.6.4.7 

( ) ( ) tMtMttM zzz ∆+=∆+ ɺ    EQ. 5.6.4.8 

5.6.4.4 Bending about Y axis 
Bending about the Y axis is identical to bending about the Z axis. A force in the Y direction and a moment about 
the Z axis, shown in Figure 5.6.5, contribute to the elemental bending.  

Figure 5.6.5 Bending about Y axis 
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The rate equations are:  
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   EQ. 5.6.4.10 

where: 

( )
25

1144

Al

I y
z

ν+
=Φ . 

Like bending about the Z axis, the factor zΦ  introduces transverse shear.  

With the time integration, the expression is: 

( ) ( ) tFtFttF zzz ∆+=∆+ ɺ       EQ. 5.6.4.11 

( ) ( ) tMtMttM yyy ∆+=∆+ ɺ       EQ. 5.6.4.12 

5.6.5 Material properties  
A beam element may have two different types of material property: 

• Elastic  

• Elasto-plastic  

5.6.5.1 Elastic Behavior 
The elastic beam is defined using material law 1 which is a simple linear material law. 

The cross-section of a beam is defined by its area A and three moments of inertia Ix , Iy and Iz  . 

An elastic beam can be defined with these four parameters. For accuracy and stability, the following limitations 
should be respected: 

AL >    EQ. 5.6.5.1 

22 10001.0 AIA y <<    EQ. 5.6.5.2 

22 10001.0 AIA z <<    EQ. 5.6.5.3 

( ) ( )zyxzy IIIII +<<+ 101.0
   EQ. 5.6.5.4 
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5.6.5.2 Elasto-plastic Behavior 
A global plasticity model is used. 

The main assumption is that the beam cross section is full and rectangular. Optimal relations between sections 
and section inertia are: 

412 AII zy =        EQ. 5.6.5.5 

zyx III +=        EQ. 5.6.5.6 

However, this model also gives good results for the circular or ellipsoidal cross-section. For tubular or H cross-
sections, plasticity will be approximated.  

Recommendations:  

AL >         EQ. 5.6.5.7 

44 10121.0 AIIA zy <<       EQ. 5.6.5.8 

100/01.0 << zy II       EQ. 5.6.5.9 

( ) ( )zyxzy IIIII +<<+ 25.0       EQ. 5.6.5.10 

5.6.5.3 Global Beam Plasticity 
The elasto-plastic beam element is defined using material law 2: 

( ) 







++=

0

ln1
ε
εεσ
ɺ

ɺ
CBA n

py       EQ. 5.6.5.11 

The increment of plastic strain is: 

y

plastic
p

W

σ
ε

∆
=∆        EQ. 5.6.5.12 

The equivalent strain rate is derived from the total energy rate: 

t

W

eq

total

∆
∆=
σ

εɺ        EQ. 5.6.5.13 

Yield stress: 














+++=

zz

z

yy

y

xx

xx
eq I

M

I

M

I

M

AA

F 222

2

2 3σ      EQ. 5.6.5.14 

If yeq σσ > , one performs a radial return on the yield surface: 

eq

y
x

pa
x FF

σ
σ

=        EQ. 5.6.5.15 

and for i= x, y, z: 

eq

y
i

pa
i MM

σ
σ

=        EQ. 5.6.5.16 
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5.6.6 Inertia Computation 
The computational method of inertia for some kinds of elements as beam is particular as the inertia has to be 
transferred to the extremities of the beam. The nodal inertias are computed in function of the material density 

ρ , the cross-section area S, the element length L and the moments of inertia zzyyxx III ,, : 

( ) 









•






•






+















xxzzyy I

L
IIMAX

LLSL
MAX

2
;;

2122

2 ρρρ
  EQ. 5.6.6.1 
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5.7 ONE DEGREE OF FREEDOM SPRING ELEMENTS 
(TYPE 4)  

One degree of freedom (DOF) spring elements are defined as a type 4 property set. Three variations of the 
element are possible:  

• Spring only 

• Dashpot (damper) only 

• Spring and dashpot in parallel 

These three configurations are shown in Figures 5.7.1 to 5.7.3.  

 

Figure 5.7.1 Spring Only  

 
 

Figure 5.7.2 Dashpot Only  

 
 

Figure 5.7.3 Spring and Dashpot in Parallel  

 
No material data card is required for spring elements. However, the stiffness k and equivalent viscous damping 
coefficient c are required. The mass m is required if there is any spring translation.  

There are three other options defining the type of spring stiffness with the hardening flag:  

• Linear Stiffness 

• Nonlinear Stiffness 

• Nonlinear Elasto-Plastic Stiffness 
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Likewise, the damping can be either:  

• Linear 

• Nonlinear  

A spring may also have zero length. However, a one DOF spring must have 2 nodes.  

The forces applied on the nodes of a one DOF spring are always colinear with direction through both nodes; 
refer to figure 5.7.4.  

Figure 5.7.4 Colinear Forces  

 

5.7.1 Time step  
The time of a spring element depends on the values of stiffness, damping and mass.  

For a spring only element:  

k

m
t =∆        EQ. 5.7.1.1 

For a dashpot only element:  

c

m
t

2
=∆         EQ. 5.7.1.2 

For a parallel spring and dashpot element:  

( )
k

ccmk
t

−+=∆
2

      EQ. 5.7.1.3 

The critical time step ensures that the stability of the explicit time integration is maintained, but it does not 
ensure high accuracy of spring vibration behavior. Only two time steps are required during one vibration period 
of a free spring to keep stability. However, if true sinusoidal reproduction is desired, the time step should be 
reduced by a factor of at least 5.  

If the spring is used to connect the two parts, the spring vibration period increases and the default spring time 
step ensures stability and accuracy.  

5.7.2 Linear spring  
Function number defining f(δ) 

N1=0 
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The general linear spring is defined by constant mass, stiffness and damping. These are all required in the 
property type definition. The relationship between force and spring displacement is given by:  

( )
dt

dl
cllkF +−= 0        EQ. 5.7.2.1 

Figure 5.7.5 Linear Force-Displacement Curve 

 
 

The stability condition is given by equation 5.7.1.3.: 

( )
k

ckmc
t

−+=∆
2

      EQ. 5.7.2.2 

5.7.3 Nonlinear elastic spring  
Hardening flag 

H=0 

The hardening flag must be set to 0 for a nonlinear elastic spring. The only difference between linear and 
nonlinear elastic spring elements is the stiffness definition. The mass and damping are defined as constant. 
However, a function must be defined that relates the force, F, to the displacement of the spring, (l-l0). It is 
defined as:  

( )
dt

dl
cllfF +−= 0       EQ. 5.7.3.1 
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Figure 5.7.6 Nonlinear Elastic Force-Displacement Curve  

 
The stability criterion is the same as for the linear spring, but rather than being constant, the stiffness is 
displacement dependent: 

( )
k

cmkc
t

′
−′+=∆

2

      EQ. 5.7.3.2 

where: 

( ) ( )







−

−∂
∂=′ 0

0

max llf
ll

k       EQ. 5.7.3.3 

 

5.7.4 Nonlinear elasto-plastic spring - Isotropic hardening 
H=1 

The hardening flag must be set to 1 in this case and f(l-l  o ) is defined by a function. Hardening is isotropic if 
compression behavior is identical to tensile behavior: 

( )
dt

dl
CllfF +−= 0       EQ. 5.7.4.1 

 

Figure 5.7.7 Isotropic Hardening Force-Displacement Curve 
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5.7.5 Nonlinear elasto-plastic spring - Decoupled hardening 
H=2 

The hardening flag is set to 2 in this case and f(l-l  o ) is defined by a function. The hardening is decoupled for 
compression and tensile behavior: 

( )
dt

dl
CllfF +−= 0       EQ. 5.7.5.1 

Figure 5.7.8 Decoupled Hardening Force-Displacement Curve  

 

 

5.7.6 Nonlinear elastic-plastic spring - Kinematic hardening 
H=4 

The hardening flag is set to 4 in this case and f1(l-l  o ) and f2(l-l  o ) (respectively maximum and minimum yield 
force) are defined by a function. The hardening is kinematic if maximum and minimum yield curves are 
identical: 

( )
dt

dl
CllfF +−= 0       EQ. 5.7.6.1 

Figure 5.7.9 Kinematic Hardening Force-Displacement Curve  
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5.7.7 Nonlinear elasto-plastic spring - Nonlinear unloading 
H=5 

The hardening flag is set to 5 in this case and f(δ) and f2(δmax) (respectively maximum yield force and residual 
deformation) are defined by a function. Uncoupled hardening in compression and tensile behavior with nonlinear 
unloading: 

( )
dt

dl
CllfF +−= 0       EQ. 5.7.7.1 

With δ= l-l  o . 

Figure 5.7.10 Nonlinear unloading Force-Displacement Curve  

 

5.7.8 Nonlinear dashpot  
The input properties for a nonlinear dashpot are very close to that of a spring. The required values are:  

• Mass, M.  

• A function defining the change in force with respect to the spring displacement. This must be equal 
to unity:  

( ) 10 =− llf  

• A function defining the change in force with spring displacement rate,  

( )dtdlg /  

• The hardening flag in the input must be set to zero.  

The relationship between force and spring displacement and displacement rate is:  

( ) 






=






−=
dt

dl
g

dt

dl
gllfF 0       EQ. 5.7.8.1 

A nonlinear dashpot property is shown in Figure 5.7.11.  
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Figure 5.7.11 Nonlinear Dashpot Force Curve  

 
The stability condition for a nonlinear dashpot is given by:  

C

M
t

′
=∆        EQ. 5.7.8.2 

 

where: 

( ) ( )








∂
∂=′ dtdlg

dtdl
C /

/
max      EQ. 5.7.8.3 

5.7.9 Nonlinear viscoelastic spring  
The input properties for a nonlinear viscoelastic spring are:  

• Mass, M  

• Equivalent viscous damping coefficient C  

• A function defining the change in force with spring displacement  

( )0llf −  

• A function defining the change in force with spring displacement rate  

( )dtdlg /  

The hardening flag in the input must be set to equal zero. The force relationship is given by:  

( ) 






−=
dt

dl
gllfF 0       EQ. 5.7.9.1 

Graphs of this relationship for various values of ( )dtdlg /  are shown in Figure 5.7.12.  
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Figure 5.7.12 Visco-Elastic Spring Force-Displacement Curves  

 
 
 

The stability condition is given by:  

( )
k

CMkC
t

′
′−′+′

=∆
2

      EQ. 5.7.9.2 

where: 

( ) ( )







−

−∂
∂=′ 0

0

max llf
ll

K       EQ. 5.7.9.3 

 ( ) ( )








∂
∂=′ dtdlg

dtdl
C /

/
max       EQ. 5.7.9.4 
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5.8 GENERAL SPRING ELEMENTS (TYPE 8) 

General spring elements are defined as type 8 element property. They are mathematical elements, which have 6 
DOF, three translational displacements and three rotational degrees of freedom. Each DOF is completely 
independent from the others. Spring displacements refer to either spring extension or compression. The stiffness 
is associated to each DOF. Directions can either be global or local. Local directions are defined with a fixed or 
moving skew frame. Global force equilibrium is respected, but without global moment equilibrium. Therefore, 
this type of spring is connected to the laboratory that applies the missing moments, unless the two defining nodes 
are not coincident.  

5.8.1 Time step  
The time step calculation for general spring elements is the same as the calculation of the equivalent type 4 
spring (Section 5.7.1).  

5.8.2 Linear spring  
See section 5.7.2; the explanation is the same as for spring type 4. 

5.8.3 Nonlinear elastic spring  
See section 5.7.3; the explanation is the same as for spring type 4. 

5.8.4 Nonlinear elasto-plastic spring - Isotropic hardening 
See section 5.7.4; the explanation is the same as for spring type 4. 

5.8.5 Nonlinear elasto-plastic spring - Decoupled hardening 
See section 5.7.5; the explanation is the same as for spring type 4. 

5.8.6 Nonlinear elasto-plastic spring - Kinematic hardening 
See section 5.7.6; the explanation is the same as for spring type 4. 

5.8.7 Nonlinear elasto-plastic spring - Nonlinear unloading 
See section 5.7.7; the explanation is the same as for spring type 4. 

5.8.8 Nonlinear dashpot  
See section 5.7.8; the explanation is the same as for spring type 4. 

5.8.9 Nonlinear viscoelastic spring  
See section 5.7.9; the explanation is the same as for spring type 4. 

5.8.10 Skew frame properties  
To help understand the use of skew frames, the deformation in the local x direction of the spring will be 
considered. If the skew frame is fixed, deformation in the local X direction is shown in Figure 5.8.1:  
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Figure 5.8.1 Fixed Skew Frame  

 
The same local x direction deformation, with a moving skew frame, can be seen in Figure 5.8.2.  

Figure 5.8.2 Moving Skew Frame 

 
In both cases, the forces are in equilibrium, but the moments are not. If the first two nodes defining the moving 
skew system are the same nodes as the two spring element nodes, the behavior becomes exactly the same as that 
of a type 4 spring element. In this case the momentum equilibrium is respected and local Y and Z deformations 
are always equal to zero.  

Fixed Nodes 

If one of the two nodes is completely fixed, the momentum equilibrium problem disappears. For example, if 
node 1 is fixed, the force computation at node 2 is not dependent on the location of node 1. The spring then 
becomes a spring between node 1 and the laboratory, as shown in Figure 5.8.3. 

Figure 5.8.3 Fixed node - Fixed skew frame 
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It is generally recommended that a general spring element (type 8) be used only if one node is fixed in all 
directions or if the two nodes are coincident. If the two nodes are coincident, the translational stiffness’ have to 
be large enough to ensure that the nodes remain near coincident during the simulation.  

5.8.11 Deformation sign convention  
Positive and negative spring deformations are not defined with the variation of initial length. The initial length 
can be equal to zero for all or a given direction. Therefore, it is not possible to define the deformation sign with 
length variation.  

The sign convention used is the following. A deformation is positive if displacement (or rotation) of node 2 
minus the displacement of node 1 is positive. The same sign convention is used for all 6 degrees of freedom.  

12 iii uuu −=        EQ. 5.8.11.1 

12 iii θθθ −=        EQ. 5.8.11.2 

5.8.12 Translational forces  
The translational forces that can be applied to a general spring element can be seen in Figure 5.8.4. For each 
DOF (i = x, y, z), the force is calculated by:  

( ) iiii uCufF
i

ɺ+=        EQ. 5.8.12.1 

where: 

C is the equivalent viscous damping coefficient  

( )ii uf  is a force function related to spring displacement  

The value of the displacement function depends on the type of general spring being modeled.  

Figure 5.8.4 Translational Forces  

 

5.8.12.1 Linear Spring 
If a linear general spring is being modeled, the translation forces are given by:  

iiiii uCuKF ɺ+=        EQ. 5.8.12.2 

where K is the stiffness or unloading stiffness (for elasto-plastic spring)  

5.8.12.2 Nonlinear Spring 
If a nonlinear general spring is being modeled, the translation forces are given by:  
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( ) ( ) iii
i

ii uCug
D

u
BAufF

i
ɺɺ

ɺ
+








+






+= ln     EQ. 5.8.12.3 

where: 

( )iuf  is a function defining the change in force with spring displacement 

( )iug ɺ  is a function defining the change in force with spring displacement rate 

A = coefficient. Default = 1.  

B = coefficient  

D = coefficient. Default = 1.  

5.8.13 Moments  
Moments can be applied to a general spring element, as shown in Figure 5.8.5. For each DOF (i = x, y, z), the 
moment is calculated by:  

( ) iiii CfM
i

θθ ɺ+=        EQ. 5.8.13.1 

where: 

C is the equivalent viscous damping coefficient  

( )iif θ  is a force function related to spring rotation  

The value of the rotation function depends on the type of general spring being modeled. Not all functions and 
coefficients defining moments and rotations are of the same value as that used in the translational force 
calculation.  

Figure 5.8.5 General Spring Moments  

 

5.8.13.1 Linear Spring 
If a linear general spring is being modeled, the moments are given by:  

iiiii CKM θθ ɺ+=        EQ. 5.8.13.2 

where K is the stiffness or unloading stiffness (for elasto-plastic spring).  



RADIOSS THEORY Version 2017  ELEMENT LIBRARY 
 

01-Jan-2017 97

5.8.13.2 Nonlinear Spring 
If a nonlinear general spring is being modeled, the moments are given by:  

( ) ( ) iii
i

ii Cg
D

BAfM θθθθ ɺɺ
ɺ

+













+








+= ln     EQ. 5.8.13.3 

where: 

( )if θ  is a function defining the change in force with spring displacement 

( )ig θ  is a function defining the change in force with spring displacement rate 

A = coefficient. Default = 1.  

B = coefficient.  

D = coefficient. Default = 1.  

5.8.14 Multidirectional failure criteria  
Flag for rupture criteria: Ifail 

Ifail=1 

The rupture criteria flag is set to 1 in this case: 

2222222
zzyyxxzyx DDDDDDF +++++=      EQ. 5.8.14.1 

Where: 

xpx DD =   is the rupture displacement in positive x direction if 0>xu  

xnx DD =   is the rupture displacement in negative x direction if 0>xu  

Graphs of this rupture criterion can be seen in Figure 5.8.6.  

Figure 5.8.6 Multi-directional failure criteria curves  

Dyp

Dyn

DxpDxn

Dyp

Dyn

DxpDxn
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5.9 PULLEY TYPE SPRING ELEMENTS (TYPE12) 

Pulley type springs are defined by type 12 element property. A general representation can be seen in Figure 
5.9.1. It is defined with three nodes, where node 2 is located at the pulley position. Other properties such as 
stiffness, damping, nonlinear and plastic effects are the same as for the other spring types, and are defined using 
the same format.  

A deformable "rope" joins the three nodes, with the mass distribution as follows: one quarter at node 1; one 
quarter at node 3 and one half at node 2.  

Coulomb friction can be applied at node 2, which may also take into account the angle between the two rope 
strands.  

The two rope strands have to be long enough to avoid node 1 or node 3 sliding up to node 2 (the pulley). If this 
occurs, either node 1 or 3 will be stopped at node 2, just as if there were a knot at the end of the rope. 

Figure 5.9.1 Pulley Type Spring Element Representation 

 

5.9.1 Time step  
The time step is calculated using the relation:  

( )
K

CCKM
t

2

2 2 −+=∆       EQ. 5.9.1.1 

This is the same as for type 4 spring elements, except that the stiffness is replaced with twice the stiffness to 
ensure stability with high friction coefficients.  

5.9.2 Linear spring  
See section 5.7.2; the explanation is the same as for spring type 4. 

5.9.3 Nonlinear elastic spring  
See section 5.7.3; the explanation is the same as for spring type 4. 

5.9.4 Nonlinear elasto-plastic spring - Isotropic hardening 
See section 5.7.4; the explanation is the same as for spring type 4. 
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5.9.5 Nonlinear elasto-plastic spring - Decoupled hardening 
See section 5.7.5; the explanation is the same as for spring type 4. 

5.9.6 Nonlinear dashpot  
See section 5.7.8; the explanation is the same as for spring type 4. 

5.9.7 Nonlinear visco-elastic spring  
See section 5.7.9; the explanation is the same as for spring type 4. 

5.9.8 Friction effects  
Pulley type springs can be modeled with or without Coulomb friction effects.  

 

5.9.8.1 Without Friction 
Without friction, the forces are computed using:  

dt

d
CKFF

δδ +== 21       EQ. 5.9.8.1 

where: 

δ is the total rope elongation = 0ll − with 2312 lll +=  

K is the rope stiffness  

C is the rope equivalent viscous damping  

5.9.8.2 With Coulomb Friction 
If Coulomb friction is used, forces are corrected using:  

( ) 






 +++=
dt

d

dt

d
CKF 21

21

δδδδ      EQ. 5.9.8.2 

( ) 






















 +++=∆
2

tanh,max 21
21

βµδδδδ F
dt

d

dt

d
CKF    EQ. 5.9.8.3 

FFF ∆+=1        EQ. 5.9.8.4 
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FFF ∆−=3        EQ. 5.9.8.5 

312 FFF −−=        EQ. 5.9.8.6 

where: 

δ1 is the elongation of strand 1-2  

δ2 is the elongation of strand 2-3  
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5.10 BEAM TYPE SPRING ELEMENTS (TYPE13) 

Beam type spring elements are defined as property type 13 elements. This type of spring element functions as if 
it were a beam element. The six independent modes of deformation are:  

• Traction / compression  

• Torsion  

• Bending (two modes)  

• Shear (two modes) 

Beam type springs only function if their length is not zero. A physical representation of a beam type spring can 
be seen in Figure 5.10.1.  

Figure 5.10.1 Representation of Beam Type Spring  

 

5.10.1 Time step  

5.10.1.1 Translational stiffness time step 

)max(

)max(. 2

_
t

tt
stifnessnaltranslatio K

CCKtmass
t

−+
=∆  

Where, max(Kt) is the maximum translational stiffness  
Ct is the translational damping 

5.10.1.2 Rotational stiffness time step 

'

2'

_

''.

r

rrr
stifnessrotational

K

CCKinertia
t

−+
=∆  

Kr’ is the equivalent rotational stiffness: )max().max( 2'
rtr KLKK +=  

Where, max(Kt) is the maximum translational stiffness 
max(Kr) is the maximum rotational stiffness 

Cr’ is the equivalent rotational damping: )max().max( 2'
rtr CLCC +=  

Where, 
max(Ct)  is the maximum translational damping 
max(Cr) is the maximum rotational damping 
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5.10.2 Linear spring  
The properties required to define the spring characteristics are stiffness K and damping C. Nonlinear and elasto-
plastic properties can also be applied, for all degrees of freedom. The properties are of the same form as simple 
type 4 spring elements (section 5.7). 

See section 5.7.2; the explanation is the same as for spring type 4. 

5.10.3 Nonlinear elastic spring  
See section 5.7.3; the explanation is the same as for spring type 4. 

5.10.4 Nonlinear elasto-plastic spring - Isotropic hardening 
See section 5.7.4; the explanation is the same as for spring type 4. 

5.10.5 Nonlinear elasto-plastic spring - Decoupled hardening 
See section 5.7.5; the explanation is the same as for spring type 4. 

5.10.6 Nonlinear elasto-plastic spring - Kinematic hardening 
See section 5.7.6; the explanation is the same as for spring type 4. 

5.10.7 Nonlinear elasto-plastic spring - Nonlinear unloading 
See section 5.7.7; the explanation is the same as for spring type 4. 

5.10.8 Nonlinear dashpot  
See section 5.7.8; the explanation is the same as for spring type 4. 

5.10.9 Nonlinear visco-elastic spring  
See section 5.7.9; the explanation is the same as for spring type 4. 

5.10.10 Skew frame properties  
Beam type spring elements are best defined using three nodes (Figure 5.10.2). Nodes 1 and 2 are the two ends of 
the element and define the local X axis. Node 3 allows the local Y and Z axes to be defined. However, this node 
does not need to be supplied.  

If all three nodes are defined, the local reference frame is calculated by:  

21nnx =�         EQ. 5.10.10.1 

31nnxz ×= ��
       EQ. 5.10.10.2 

xzy
��� ×=         EQ. 5.10.10.3 

If node 3 is not defined, the local skew frame that can be specified for the element is used to define the Z axis. 
The X and Y axes are defined in the same manner as before. 

skewyxz
��� ×=        EQ. 5.10.10.4 
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If no skew frame and no third node are defined, the global Y axis is used to replace the Y skew axis. If the Y 
skew axis is collinear with the local X axis, the local Y and Z axes are placed in a totally arbitrary position. The 
local Y axis is defined at time zero, and is corrected at each cycle, taking into account the mean X axis rotation.  

 

Figure 5.10.2 Element Definition 

 

5.10.11 Sign Conventions  
The sign convention used for defining positive displacements and forces can be seen in Figure 5.10.3.  

Figure 5.10.3 Sign Conventions 

 

5.10.12 Tension  
The tension component of the beam type spring element is independent of other forces. It is shown in Figure 
5.10.4. The tension at each node is computed by:  

( ) xxxxx uCufF ɺ+=1       EQ. 5.10.12.1 

12 xx FF −=        EQ. 5.10.12.2 
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where 

12 xxx uuu −=  is the relative displacement of nodes 1 and 2.  

( )xx uf  is the function defining the force-displacement relationship.  

It can be linear or nonlinear (see sections 5.7.2 to 5.7.5.).  

Figure 5.10.4 Spring Tension 

 

5.10.13 Shear - XY  
Shear in the Y direction along the face perpendicular to the X axis is a combination of forces and moments. This 
can be seen in Figure 5.10.5.  

Figure 5.10.5 XY Shear Forces and Moments 

 
There are two mechanisms that can cause shear. The first is the beam double bending as shown in Figure 5.10.5. 
The second is shear generated by node displacement, as shown in Figure 5.10.6, where node 2 is displaced.  

Figure 5.10.6 Shear due to Node Displacement 
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The forces and moments are calculated by:  

( ) yyyyy uCufF ɺ+=1       EQ. 5.10.13.1 

12 yy FF −=        EQ. 5.10.13.2 

21 yz lFM −=        EQ. 5.10.13.3 

12 zz MM =        EQ. 5.10.13.4 

where: 








 +−−=
2

12
12

zz
yyy luuu

θθ
 

( )yy uf  is the function defining the force-displacement relationship.  

5.10.14 Shear - XZ  
The XZ shear is orthogonal to the XY shear described in the previous section. The forces and moments causing 
the shear can be seen in Figure 5.10.7.  

Figure 5.10.7 XZ Shear Forces and Moments 

 
The forces and moments are calculated by: 

( ) zzzzz uCufF ɺ+=1        EQ. 5.10.14.1 

12 zz FF −=        EQ. 5.10.14.2 

21 zy lFM =        EQ. 5.10.14.3 

12 yy MM =        EQ. 5.10.14.4 

Where,  








 +
+−=

2
12

12
yy

zzz luuu
θθ

 

( )zz uf  is the function defining the force-displacement relationship.  
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5.10.15 Torsion  
Torsional forces, shown in Figure 5.10.8, are calculated using the relations:  

( ) xxxxxxx CfM θθ ɺ+=1       EQ. 5.10.15.1 

12 xx MM −=        EQ. 5.10.15.2 

where: 

12 xxx θθθ −=  is the relative rotation of node 1 and 2.  

( )xxxf θ  is the function defining the force-displacement relationship.  

Figure 5.10.8 Beam Type Spring Torsion 

 

5.10.16 Bending about the Y Axis  
Bending about the Y axis can be seen in Figure 5.10.9. The equations relating to the moments being produced 
are calculated by:  

( ) yyyyyyy CfM θθ ɺ+=1       EQ. 5.10.16.1 

12 yy MM −=        EQ. 5.10.16.2 

where: 

12 yyy θθθ −=  is the relative rotation of node 1 and 2.  

( )yyyf θ  is the function defining the force-displacement relationship. 

Figure 5.10.9 Bending about Y axis 

 

5.10.17 Bending about the Z Axis  
The equations relating to the moment generated in a beam type spring element and the beam's displacement, 
(Figure 5.10.10) is given by:  

( ) zzzzzzz CfM θθ ɺ+=1       EQ. 5.10.17.1 

12 zz MM −=        EQ. 5.10.17.2 
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where  12 zzz θθθ −=  is the relative rotation of node 1 and 2.  

( )zzzf θ   is the function defining the force-displacement relationship.  

Figure 5.10.10 Bending about Z axis 

 

5.10.18 Multidirectional failure criteria  
See Section 5.8.14; the explanation is the same as for spring type 8. 
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5.11 MULTISTRAND ELEMENTS (TYPE 28) 

5.11.1 Introducing Multistrand Elements 
Multistrand elements are n-node springs where matter is assumed to slide through the nodes. It could be used for 
belt modelization by taking nodes upon the dummy. Friction may be defined at all or some nodes. When nodes 
are taken upon a dummy in order to modelize a belt, this allows friction to be modelized between the belt and the 
dummy. 

5.11.2 Internal Forces Computation 

 

Nodes are numbered from 1 to n, and strands are numbered from 1 to n-1 (strand k goes from node Nk to node 
Nk+1). 

5.11.2.1 Averaged force into multistrand element 
The averaged force in the multistrand is computed as:  

Linear spring δδ ɺ
00 L

C

L

K
F +=  

Non linear spring ( ) ( ) δεε ɺɺ
0L

C
gfF +⋅=  

or ( ) δε ɺ
0L

C
fF +=  if g function identifier is 0 

or ( ) δε ɺɺ
0L

C
gF +=  if f function identifier is 0 

where, ε  is engineering strain: 
0

0

L

LL −=ε  

L0  is the reference length of element. 

 

5.11.2.2 Force into each strand 
The force into each strand k is computed as:  

Fk=F+∆Fk  
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∆Fk is computed an incremental way: 

( ) ( ) δεδε
00

1
L

K

l

K
tFtF k

k
kk −+−∆=∆      EQ. 5.11.2.1 

with 0
kl  the length of the unconstrained strand k, ( ) ( )1−−= tt εεδε  and ( )kkkk vvtu −⋅= +1δδε , 

where ku  is the unitary vector from node Nk to node Nk+1 . 

 

Assuming: 

00 L

L

l

l

k

k =         EQ. 5.11.2.2 

where kl  is the actual length of strand k. 

Therefore, EQ. 5.11.2.1 reduces to: 

( ) ( ) 







−+−∆=∆ δεδε

k
kkk l

L

l

K
tFtF 01      EQ. 5.11.2.3 

5.11.2.3 Friction 
Friction is expressed at the nodes: if µ  is the friction coefficient at node k, the pulley friction at node Nk is 

expressed as: 

( ) 






∆+∆+≤∆−∆ −− 2
tanh2 11

βµ
kkkk FFFFF     EQ. 5.11.2.4 

When equation 5.11.2.4 is not satisfied, kk FF ∆−∆ −1  is reset to ( ) 






∆+∆+ − 2
tanh2 1

βµ
kk FFF . 

All the kF∆  (k=1,n-1) are modified in order to satisfy all conditions upon kk FF ∆−∆ −1  (k=2,n-1), plus the 

following condition on the force integral along the multistrand element: 

( )∑
−=

=∆+
1,1nk

kk LFFFl       EQ. 5.11.2.5 

This process could fail to satisfy equation 5.11.2.4 after the )1,1( −=∆ nkFk  modification, since no iteration 

is made. However, in such a case one would expect the friction condition to be satisfied after a few time steps. 

Note: Friction expressed upon strands (giving a friction coefficient µ along strand k) is related to pulley 
friction by adding a friction coefficient µ /2 upon each nodes Nk and Nk+1 . 

 

5.11.2.4 Time step 
Stability of a multistrand element is expressed as: 

k
K

CKlC
t

k

kkkk ∀
−+

≤∆ ,
2 ρ

      EQ. 5.11.2.6 
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with 
0L

dmultistrantheofMass
Kk =  and (assuming 9.2.2.2) : 

( )







−
=









−
=

0000
,max,max

LLl

FL

Ll

KL

ll

F

l

K
K

kkkkk
k     EQ. 5.11.2.7 

( ) ( )
( ) ( )

00 Ll

L
C

d

dg
f

l

C
d
dg

f
C

kk
k 







 +=







 +
= ε

ε
ε

ε
ε

ε
ɺ

ɺ
ɺ

   EQ. 5.11.2.8 
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5.12 SPRING TYPE PRETENSIONER (TYPE 32) 

5.12.1 Introducing pretensioners 
Pretensioner expected behavior is as follows: before pretensioning, a piston is fixed in its initial position; when 
activated, the piston is pushed and cannot slide once the piston has reached the end of its slide, it is unable to 
slide further in any direction in the opposite direction from its actual position. 

5.12.2 RADIOSS model for pretensioners 

5.12.2.1 Linear model 

 
STIF0 is the spring stiffness before sensor activation. At sensor activation, the 2 input coefficients among D1, 
STIF1, F1 and E1 determine the pretensioner characteristics. Let us recall the following relations between the 4 
coefficients: 

1

1
1

11
1 ,

2 D

F
K

FD
E =⋅=       EQ. 5.12.2.1 

STIF0 is also used as unloading stiffness before the end of the piston's slide, and as both loading and unloading 
stiffness at the end of the piston's slide. STIF0 should be large enough to allow locking. 

5.12.2.2 Nonlinear model 
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STIF0 is spring stiffness before sensor activation. Depending on the input, pretensioning force is defined as f(L-
L0), with either g(t-t0), or f(L-L0).g(t-t0), with L0 length of the spring at sensor activation time and at t0 sensor 
activation time. 

Similar use of STIF0 allows piston locking. 

5.12.2.3 Force computation 

Let the pretensioning force ( ) ( )( )011 LtLSTIFFtFp −⋅+=  for a linear model,  

and ( ) ( )( )0LtLftFp −=  or ( )0ttg −  or ( )( ) ( )00 ttgLtLf −⋅−  for a nonlinear model. 

The force into the pretensioner spring is computed as:    EQ. 5.12.2.2 

if, ( ) 0≥+ dttFp  

 ( ) ( ) ( ) ( ) ( )( )tLdttLSTIFtFdttFMaxdttF p −+⋅++=+ 0,  

and ( ) ( ) ( ) ( )( )tLdttLSTIFtFdttF −+⋅+=+ 0  otherwise. 

 


