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5.0 ELEMENT LIBRARY

RADIOSS element library contains elements for dna or three dimensional problems. Some new elesnent
have been developed and implemented in recentovestsMost of them use the assumed strain metheddinl
some locking problems. For the elements using redlirctegration schema, the physical stabilizati@thod is
used to control efficiently the hourglass deformasi. Another point in these new elements is theafiseo-
rotational coordinate system. For the new solidnelets, as the assumed strains are often defingn ispecific
directions, the use of global system combined d@bhmman's stress derivation contributes to commatatror
especially when solid undergoes large shear strains

The RADIOSS finite element library can be classifieto the following categories of elements:

* Solid elements : 8- and 20-node bricks, 4- and dfertetrahedrons,

» Solid-shells : 8-, 16- and 20-node hexahedronmde pentahedral element,

» 2 dimensional elements : 4-node quadrilateralplfane strain and axisymmetrical analysis,
» Shell elements : 4-node quadrilaterals and 3-nodedles,

* One dimensional elements: rivet, springs, bar aats.

The implementation of these elements will now biited. Expression of nodal forces will be develbps, for
explicit codes they represent the discretizatiothefmomentum equations. Stiffness matrices, warehcentral
to implicit finite element approaches, are not deped here.

5.1 Solid Hexahedron Elements

RADIOSS brick elements have the following propetie
* BRICKS: 8-node linear element with reduced or fotegration,
* HAB8: 8-node linear element with various humberrégration points going from 2x2x2 to 9x9x9,

« HEPH: 8-node linear element with reduced integrafimint and physical stabilization of hourglass
modes,

» BRICK20: 20-node quadratic element with reducetubbrintegration schemes.

For all elements, a lumped mass approach is usdditen elements are isoparametric, i.e. the sampesha
functions are used to define element geometry lardent displacements

The fundamental theory of each element is desciibéus chapter.

5.1.1 Shape functions for linear bricks

Shape functions define the geometry of an elemeritsi computational (intrinsic) domain. As was seéen
Chapter 3, physical coordinates are transformed simpler computational intrinsic coordinates satth
integration of values is numerically more efficient

01-Jan-2017 5
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Figure 5.1.18 Node Brick Element

Where:r =& ,s=n ,t=¢

\J

8

The shape functions of an 8 node brick elementyahio Figure 5.1.1, are given by:

®,= < (1-¢)t-n)a-¢)

@, =2 (- &a-n)e+<)

@, =+ Ye-n)a+?)
@, =5+ e-n)a-0)
@, =2 (- &)a+n)a-¢)
@ =2 (- E)urn)e+?)

@, = @+ ELen)Led)

@, =2 [+ E)arn)i-<)

The element velocity field is related by:

A :iq)| Vi

1=1

where theVv, are the nodal velocities.
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5.1.2 Strain rate

The relationship between the physical coordinaté esmputational intrinsic coordinates system fobrick
element is given by the matrix equation:

o0, | [x oy oz]law, ]  [ow,]
0¢ 0¢ 05 0¢ || ox ox
0P, |_|0x 0oy 0z |/ 0P, |__ |0,
— === = — = —F{.— EQ.5.1.2.1
077 arp dn on || oy ay
oP, | |ox dy 0z || 99, oD,
' o¢ | |o¢ oa¢ a¢|loz] | oz
Hence:
9%, |- F 0P, EQ.5.1.2.2
ox 0&
where F{ is the Jacobian matrix.
The element strain rate is defined as:
. _1 6\/, aVl-
& =5 a0 Tag EQ.5.1.2.3
2{ 0x; 0x%
Relating the element velocity field to its shapediion gives:
8
N _ 0P, v, EQ.5.1.2.4
ox; 3 0x;
Hence, the strain rate can be described directigrins of the shape function:
ooV ) 8
& L% :ZB O, EQ.5.1.2.5
2ok % ) Gox

As was seen in section 2.4.1, volumetric straia rmtalculated separately by volume variation.

For one integration point:

op, 0P, 0P, 0d, 0P, 0P, 0P, _ 0D,
=_ : =— : =- : =- EQ.5.1.2.6
)¢ o0x. o0X. 0X; o0X. 0X 0X 0X;

] J ] J ] j j J

F.E Method is used only for deviatoric strain readculation in A.L.E and Euler formulation.

Volumetric strain rate is computed separately Bpgport of density and volume variation.

5.1.3 Assumed strain rate

Using Voigt convention, the strain rate of EQ. 8.8.can be written as:

CREUMDY 0 511
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With,
d=le, &, &, 2, 2, 2,)

r +

o

0
o

[B]=

o %%

o
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It is useful to take the Belytschko-Bachrach's fomn [27] of the shape functions written by:

4
@, (x,y,2,6,7,0) =4, +b, x+b, By+b, T+ yig,

EQ.5.1.3.2
a=1
Where,
0P,
=——\&E=n=¢=0);
o (6=n=¢=0)
8
__[ra (Zr X j (ZFJ ij (Z zjjbZ }
J=1
(@=(n¢ & é&n énd)
The derivation of the shape functions is given by:
acp Z a ""’” EQ.5.1.3.3

It is decomposed by a constant part which is dyefrmulated with the Cartesian coordinates, andoa-
constant part which is to be approached separdtelythe strain rate, only the non-constant pamaslified by
the assumed strain. You can see in the followirsg the non-constant part or the high order pajtss the
hourglass terms.

You now have the decomposition of the strain rate:

(4= ZIB]{V Zﬁ'—’a] +[3])[ }={4°Hg" EQ.5.1.3.4
with:
_Qd 0 0] (4 4 4 1
0 b, O e S Y6 Y4
0 O 0 QI H ) < 5! < 0 - a;l 0
8=y, b ofEBI'f 0 2% 0 % o 3y
b o 0 0 3¥% Sy dy% o
_0 bz| Q’Xl_ L a=1 a=1 a=1 B
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Belvtschko and Bindeman [65] ASQBI assumed strainsied:

{4 ZEIB]O’L[B]HXW} EQ.5.1.35

with

)(,1234 _’I){Is_l){lu —DZ|2 iy
—DX? _VX|14 Y|1234 _DZ|1 U 34

e

Y|l 2 )(11 2 0
Z|1 3 0 )(Il 3
0 Z|2 3 Y|2 3

where X2y ey N i =

ay ay ?
To avoid shear locking, some hourglass modes argénalted in the terms associated with shear sortbahear
strain occurs during pure bending. E.‘g’f, X,3 in éxy terms and all fourth hourglass modes in sheardenm®

. . ) ) . I ™
also removed since this mode is non-physical asthisilized by other terms |['BI ]

The terms with Poisson coefficient are added taiakan isochoric assumed strain field when the heelacity

is equivoluminal. This avoids volumetric locking & = 0.5. In addition, these terms enable the element to
capture transverse strains which occurs in a begstate in bending. The plane strain expressioasiaed since
this prevents incompatibility of the velocity assted with the assumed strains.

5.1.3.1 Incompressible or quasi-incompressible case

(Flag for new solid element: Icpr =0,1,2)

For incompressible or quasi- incompressible mdterthe new solid elements have no volume lockiraplem
due to the assumed strain. Another way to deal tiih problem is to decompose the stress field tht
spherical part and the deviatory part and use estluotegration for spherical part so that the pmesds
constant. This method has the advantage on the watign time, especially for the full integrate@mlent. For
some materials which the incompressibility can banged during computation (for example: elastojaast
material, which becomes incompressible as the draftplasticity), the treatment is more complicat&thce
the elastoplastic material with large strain is thest frequently used, the constant pressure metasdbeen
chosen for RADIOSS usual solid elements. Thelitgpg has been introduced for new solid elements.

e lcpr =0: assumed strain withh terms is used.

* lcpr =1: assumed strain without terms and with a constant pressure method is Udeslmethod is
recommended for incompressible (initial) materials.

e lcpr =2: assumed strain with terms is used, wheng is variable in function of the plasticity state.
The formulation is recommended for elastoplastitemials.

5.1.4 Internal force calculation

Internal forces are computed using the generaligkdion:

fin = J'J 99, dQ EQ.5.1.4.1

01-Jan-2017 9
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However, to increase the computational speed optbeess, some simplifications are applied.

5.1.4.1 Reduced Integration Method

This is the default method for computing interraices. A one point integration scheme with consséetss in
the element is used. Due to the nature of the shapgions, the amount of computation can be suilistiéy
reduced:

op,  0d, 0P, _ 0d, 0P, _ 0d, 0D, _ 0P,
=— : =— : =- : =- EQ.5.1.4.2
)¢ ) e )@ o0x. ()¢ )¢ ) e o0x.

J J J J J J J J

0P
Hence, the value—" is taken at the integration point and the inteforde is computed using the relation:

axj

F, =0, (a;&j Q EQ.5.1.4.3
X
I Jo

The force calculation is exact for the special az#fsthe element being a parallelepiped.

5.1.4.2 Full Integration Method

The final approach that can be used is the fullegaized formulation found in EQ. 5.1.4.1. A clasdieight
point integration scheme, with non-constant streasconstant pressure is used to avoid lockinglpros. This
is computationally expensive, having eight deviatatress tensors, but will produce accurate reswith no
hourglass.

When assumed strains are used with full integrafidéf8 element), the reduced integration of presssireo
more necessary, as the assumed strain is thea béldng problem.

5.1.4.3 Improved Integration Method for ALE

This is an ALE method for computing internal for¢eag INTEG). A constant stress in the elementsed.

0P, , . .
The valuej.a— dQ is computed with Gauss points.
X.
a 94

5.1.5 Hourglass modes

Hourglass modes are element distortions that have gtrain energy. Thus, no stresses are creatbihwie
element. There are 12 hourglass modes for a blezkent, 4 modes for each of the 3 coordinate doestT"
represents the hourglass mode vector, as define&#ldnyagan-Belytschko [12]. They produce linearistra
modes, which cannot be accounted for using a stdratee point integration scheme.

M=+ % % % % 1-1+1-1)

01-Jan-2017 10
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i

ke i

=+ % % & 1 1-1+1+1)

1 s

=+ % & % -1+ 1+1-1)

4

y i I", , II.-'I p
e
rLg

M=+ % % % &1+ 1-1+1)

To correct this phenomenon, it is necessary twdhice anti-hourglass forces and moments. Two pessib
formulations are presented hereafter.

5.1.5.1 Kosloff & Frasier Formulation [10]

The Kosloff-Frasier hourglass formulation usesrapdified hourglass vector. The hourglass velocétes are
defined as:

ﬂ:ir” v EQ.5.15.1
oo o'
where:
« [ isthe non-orthogonal hourglass mode shape vector,
eV is the node velocity vector,
e iisthe direction index, running from 1 to 3,
* | is the node index, from 1 to 8,
e [ isthe hourglass mode index, from 1 to 4.
This vector is not perfectly orthogonal to the diiody and deformation modes.

All hourglass formulations except the physical 8izdition formulation for solid elements in RADIOS&e a
viscous damping technique. This allows the housgtasisting forces to be given by:

fhor = %1 pch(%/ﬁ)zzag—: oy EQ.5.1.5.2

01-Jan-2017 11
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where:
* O isthe material density,
e C is the sound speed,
» h is a dimensional scaling coefficient defined ia thput,

« Q is the volume.

5.1.5.2 Flanagan-Belytschko Formulation [12]

In the Kosloff-Frasier formulation seen in sectiéril.5.1, the hourglass base veci?q? is not perfectly

orthogonal to the rigid body and deformation motlest are taken into account by the one point irzign
scheme. The mean stress/strain formulation of apmiet integration scheme only considers a fullyeér
velocity field, so that the physical element modegerally contribute to the hourglass energy. Tadthis, the
idea in the Flanagan-Belytschko formulation is wgld an hourglass velocity field which always rensi

orthogonal to the physical element modes. Thisbeawritten as:
vHou =y — i EQ.5.1.5.3

The linear portion of the velocity field can be arped to give:
— av_ —
i =V, _(Vn + [(Xj - X )j EQ.5.1.5.4
0X;

Decomposition on the hourglass vectors base giv8s [

oq” _ rember =y —%D(j e EQ.5.1.5.5
ot 0X;
where:
aq’

E are the hourglass modal velocities,
" is the hourglass vectors base.

. ov, aq)j . .
Remembering that— = — [V, and factorizing EQ. 5.1.5.5 gives:
X

0x; j
a 0D
9’ _ v, [Erla -y rlaJ EQ.5.1.5.6
ot 0X;
0db.
yla — I—Ia _ > j X, rf EQ.5.1.5.7
X

is the hourglass shape vector used in pIacE,"’oﬁn EQ.5.1.5.2.

01-Jan-2017
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5.1.5.3 physical hourglass formulation HEPH

You also try to decompose the internal force veatofollows:

{fm}= {(flim )O}J’{(flim )H} EQ.5.1.5.8

In elastic case, you have:

{im}=[ 18] [c]g[BJ v’ oo
- o T+ B o, 5] ko

Q

EQ.5.1.5.9

8

. 0 t

The constant par{(fl'"t) }=I([B, ]O) [C]Z[BJ]O{VJ }dQ is evaluated at the quadrature point just like
Q j=1

other one-point integration formulations mentionieefore, and the non-constant part (Hourglass) bl

calculated as following:

0X; -
Taking the simplification of? =0;(i # j) (that is the Jacobian matrix of EQ. 5.1.2.1 isgdizal), you

j
have:

4
i H
() = Qupe EQ. 5.1.5.10
a=1
with 12 generalized hourglass stress r@g calculated by:

Q= alHy +Hu i +Hyal +Hyal]
_ivH“qij +|7|—|ijq‘j} EQ.5.1.5.11

1+v |, .4
5 i

and

EQ.5.1.5.12

Where i,j,k are permuted between 1 to 3 a']f’d has the same definition than in EQ. 5.1.5.6.

Extension to non-linear materials has been donelgiiny replacing shear modulyd by its effective tangent

values which is evaluated at the quadrature péiat.the usual elastoplastic materials, use a mopaistic
procedure which is described in the following sarti

01-Jan-2017 13
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5.1.5.3.1 Advanced elasto-plastic hourglass control

With one-point integration formulation, if the naoenstant part follows exactly the state of consgant for the
case of elasto-plastic calculation, the plastichiji be under-estimated due to the fact that thestant
equivalent stress is often the smallest one iretement and element will be stiffer. Therefore,imaf a yield
criterion for the non-constant part seems to bealdgdea to overcome this drawback.

Plastic yield criterion:

The von Mises type of criterion is written by:
— 2 42—
f=0y,¢n{)-0,=0 EQ.5.1.5.13

for any point in the solid element, whee®, is evaluated at the quadrature point.

As only one criterion is used for the non-constaatt, two choices are possible:

1. taking the mean value, i.ef = f(ﬁ )‘5 = ija dQ
: 9 U «q)fTeq T o) e
Q

2. taking the value by some representative pointsgfample: eight Gausse points
The second choice has been used in this element.

Elastro-plastic hourglass stress calculation:

The incremental hourglass stress is computed by:

e Elastic increment
S =(o)y +lcfe" ot

ntl

(@
*  Check the yield criterion

« If f =0, the hourglass stress correction will be done tyadlial return

(@)= P((Ui S f)

5.1.6 Stability

The stability of the numerical algorithm dependstios size of the time step used for time integragection
4.5). For brick elements, RADIOSS uses the follgv@guation to calculate the size of the time step:

h<k ! EQ.5.1.6.1

cla +vVa?+1
This is the same form as the Courant conditiondimmped materials. The characteristic length of réiquéar

element is computed using:

_ Element Volume
Largest Sde Surface

EQ.5.1.6.2

For a 6-sided brick, this length is equal to thekest distance between two opposite faces.

The terms inside the parentheses in the denomiaagaspecific values for the damping of the materia
A
ocl

« V effective kinematic viscosity,

e a

01-Jan-2017 14
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e C= @ for fluid materials,
\ 29p

e C= \/5 +il£ = \/M for a solid elastic material,
Y2,

+ Kis the bulk modulus,

+ A, are Lame moduli.

The scaling factok=0.90, is used to prevent strange results that may oeten the time step is equal to the
Courant condition. This value can be altered byuiber.

5.1.7 Shock waves

Shocks are non-isentropic phenomena, i.e. entopgti conserved, and necessitates a special faiorula

The missing energy is generated by an artificidlk biscosityq as derived by von Neumann and Richtmeyer [9].
This value is added to the pressure and is compyted

_ 2 o 08 ? 0&,
g=q, 0 —%| —qHc—= EQ.5.1.7.1

where

e lisequal tod/Q or to the characteristic length,

+ Q isthe volume,

0¢&
a—:k is the volumetric compression strain rate tensor,

» cis the speed of sound in the medium.

The values ofg, and(, are adimensional scalar factors defined as:

* (, is a scalar factor on the quadratic viscosityed@bjusted so that the Hugoniot equations are
verified. This value is defined by the user. Thé&adé# value is 1.10.

* (, is a scalar factor on the linear viscosity thahda out the oscillations behind the shock. This is
user specified. The default value is 0.05.

Default values are adapted for velocities lowentheach 2. However for viscoelastic materials (lady 35, 38)
or honeycomb (law 28), very small values are recemated, i.e. 18.

5.1.8 Element degeneration

Element degeneration is the collapsing of an elérgrone or more edges. For example: making art eigtie
element into a seven node element by giving nodaed/8 the same node number.

The use of degenerated elements for fluid appbioatis not recommended. The use of degenerateceisiior
assumed strain formulation is not recommendeddy ttannot be avoided, any two nodes belongingsanae
edge can be collapsed, with some examples showwbel

For solid elements, it is recommended that eleragmimetry be maintained.

For 4 node elements, it is recommended that theiadetrahedron element be used.

01-Jan-2017 15
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Some examples of element degeneration are showw bel

Not recommended degenerations

Recommended degeneration

Connectivity: 12345555
Connectivity: 12345665

01-Jan-2017 16
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5.1.9 Internal stress calculation

5.1.9.1 Global formulation

The time integration of stresses has been statéidrgaection 2.6.) as:

Ojj (t+At)=0ij (t)+dijAt EQ.5.1.9.1
The stress rate is comprised of two components:

0 =0 + 0 EQ.5.1.9.2
where

« O is the stress rate due to the rigid body rotatigaocity,

« O isthe Jaumann objective stress tensor derivative.
The correction for stress rotation from time titoet t+ At is given by [2]:
0y =0, Q +0,Qy EQ.5.1.9.3
where Q is the rigid body rotational velocity tensor (E&4.1.11).

The Jaumann objective stress tensor derivam‘{’eis the corrected true stress rate tensor withotational
effects. The constitutive law is directly appliedthe Jaumann stress rate tensor.

Deviatoric stresses and pressure (see sectiorai Qomputed separately and related by:
g; =S; ~ P9, EQ.5.1.9.4
where

* §; isthe deviatoric stress tensor;

e pisthe pressure or mean stress - defined as posgiticompression,

. 5”- is the substitution tensor or unit matrix.

5.1.9.2 Co-rotational Formulation

A co-rotational formulation for bricks is a formtilan where rigid body rotations are directly conguifrom the
element’'s node positions. Objective stress andhsteasors are computed in the local (co-rotatipfiame.
Internal forces are computed in the local frame thedh rotated to the global system.

So, when co-rotational formulation is used, EQ. B2 0, = J; + JJ reduces to:

g; =0y EQ.5.1.9.5
where JI‘]' is the Jaumann objective stress tensor derivatipeessed in the co-rotational frame.

The following illustrates orthogonalization, wheneoof the r, s, t directions is orthogonal to th tother
directions.
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Isoparametric frame

T

Local (cc-rotational)

When large rotations occur, this formulation is emaccurate than the global formulation, for whiba stress
rotation due to rigid body rotational velocity ismputed in an incremental way.

Co-rotational formulation avoids this kind of prebi.

Let us consider the following test:

4>

Fix constant velocity on the top of t

The increment of the rigid body rotation vectoridgrtime stepAt is:

(ov, 70y -av, 10x)=0
AQ=At/2 (avxlaz—avzlax):avxlaz
(ov, 10x~av, 13y)=0

EQ.5.1.9.6

So, AQ, = aAT /2 wherea =V/h equals the imposed velocity on the top of the kodévided by the

height of the brick (constant value).

Due to first order approximation, the incremenstésso,, due to the rigid body motion is:

Aoy, =0Q (1, +7,)=20Q 1, = alTT,,
Increment of stresg/, due to the rigid body motion:
Aoy, =-0Q (1, +1,)=-20Q,1,, = -aATz,,
Increment of shear stregs, due to the rigid body motion:
AT, =0Q (0, -0,)=20Q,0, =alTo,,
Increment of shear strain:
Ay, = AT(0v, /9z+dv, /0x) = aAT
Increment of stresg/,, due to strain:

Ao, =0

01-Jan-2017
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EQ.5.1.9.8

EQ.5.1.9.9

EQ. 5.1.9.10

EQ.5.1.9.11
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and increment of shear stress due to strain is:
Aty =GAy,, = GalAT EQ.5.1.9.12

whereG is the shear modulus (material is linear elastic).
From EQ. 5.1.9.8 to EQ. 5.1.9.12, you have:

Atr,, =alATo,, + GaAT
EQ.5.1.9.13
Ao, =-alAr,,
System EQ. 5.1.9.13 leads to:
AT, I AT? =-a’r,, EQ.5.1.9.14

So, shear stress is sinusoidal and is not stiiietiseasing.

xz shear stress

1.50e+10
1.25e+10 o
1.00e+10 A
7.50e+09 -

5.00¢+09 T

2.50e+09 L~ o

-2.50e+09

0.0 2000 4000 600.0 8000  1000.0
xz shear strain (%)

é g ggg?(?‘tla{%r% lfl(g%?rrllulation

So, it is recommended to use co-rotational fornmatespecially for visco-elastic materials suclicesns, even
if this formulation is more time consuming than tiebal one.

5.1.9.3 Co-rotational formulation and orthotropic material

When orthotropic material and global formulatiore arsed, the fiber is attached to the first directid the
isoparametric frame and the fiber rotates a diffeveay depending on the element numbering (seeMelo

Y =T/2

=
t yd

[

framer, s’, t’ is obtained by
orthogonalization of isoparametric frame
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On the other hand, when the co-rotational formatais used, the orthotropic frame keeps the same@tation
with respect to the local (co-rotating) frame, @&htherefore also co-rotating (see below).

[}

A~

5.1.10 Deviatoric stress calculation

With the stress being separated into deviatoric@edsure (hydrostatic) stress (Section 2.7), tiésdeviatoric
stress that is responsible for the plastic defaonadf the material. The hydrostatic stress wither shrink or
expand the volume uniformly, i.e. with proportiomdlange in shape. The determination of the deviagiress
tensor and whether the material will plasticalljoen requires a number of steps.

STEP 1: Perform an Elastic Calculation

The deviatoric stress is time integrated from trevjpus known value using the strain rate to comauit elastic
trial stress:

s?' (t + At) =5 (t)+ $;At+ 26(5‘” _%ékkdij JAt EQ.5.1.10.1

whereG is the shear modulus.
This relationship is Hooke's Law, where the straie is multiplied by time to give strain.
STEP 2: Compute von Mises Equivalent Stress and Crent Yield Stress

Depending on the type of material being modeled, rttethod by which yielding or failure is determingi
vary. The following explanation relates to an edpistic material (LAW?2).

The von Mises equivalent stress relates a threemiional state of stress back to a simple caseniakial
tension where material properties for yield andiitity are well known and easily computed.

The von Mises stress, which is strain rate dependeoalculated using the equation:

ot = g EQ. 5.1.10.2
vm — ZSij Q.5.1.10.

The flow stress is calculated from the previousiitastrain:

o,(t)=a+be” (t) EQ.5.1.10.3
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For material types 3, 4, 10, 21, 22, 23 and 36, EQ11.3 is modified according to the differentdeling of the
material curves.

STEP 3: Plasticity Check
The state of the deformation must be checked.

o -0,<0

vm

If this equation is satisfied, the state of strissglastic. Otherwise, the flow stress has beereded and a
plasticity rule must be used. This is shown in Fégb.1.2.

Figure 5.1.2 -Plasticity Check

<
va _Gy

Elastic update Plastic update

el pa
.= 5.. S.. = §..
Si /j Si j i I
The plasticity algorithm used is due to Mendelgah,
STEP 4: Compute Hardening Parameter

The hardening parameter is defined as the slopieedtrain-hardening part of the stress-straineurv

do,
=— EQ.5.1.10.4
deP
This is used to compute the plastic strain at time
ag.—0
PNt =T Y EQ.5.1.10.5
3G+H
This plastic strain is time integrated to deterntime plastic strain at timé+ At :
eP(t+At)=£P(t)+£PAt EQ.5.1.10.6
The new flow stress is found using:
o,(t+At)=a+be” (t+At) EQ.5.1.10.7

STEP 5: Radial Return

There are many possible methods for obtairﬁﬁ@ from the trial stress. The most popular methodlves a
simple projection to the nearest point on the flawface, which results in the radial return method.
The radial return calculation is given in EQ. 50l8. Figure 5.1.3 is a graphic representatioradfal return.

g
st=—rs" EQ.5.1.10.8

g,

vm
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Figure 5.1.3 -Radial Return

el

p O/

o, (t+An)

S

View along pure pressure axis ,0; = O;; = Oy
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5.2 Solid Tetrahedron Elements

5.2.1 4 node solid tetrahedron

The RADIOSS solid tetrahedron element is a 4 nddenent with one integration point and a linear €hap
function.

This element has no hourglass. But the drawbaek¢harlow convergence and the shear locking.

5.2.2 10 node solid tetrahedron

The RADIOSS solid tetrahedron element is a 10 nedement with 4 integration points and a quadrsiiape
function as shown in Figure 5.2.1.

Figure 5.2.1 — (a))lsoparametric 10 node tetrahedrdb), Nodal mass distribution

Introducing volume coordinates in an isoparamétéme:
L=r
L,=s
L, =t
L,=1-L,-L,-L
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The shape functions are expressed by:

o, = (2L, -1, EQ.5.2.2.1
@, = (2L, -1)L, EQ.5.2.2.2
®, = (2L, 1L, EQ.522.3
@, = (2L, -1)L, EQ.52.2.4
CDS =4LL, EQ.5.2.25
CDG =4L,L, EQ.5.2.2.6
@, =4L4L, EQ.52.2.7
CDB =4LL, EQ.5.2.2.8
CDQ =4L,L, EQ.5.2.2.9
CDlO =4L,L, EQ.5.2.2.10
Location of the 4 integration points is expressg{49].

L L, L, L,

a o B B B

b B o B B

c B B o B

d B B B o

With,
a =0[58541020and 5 =0[13819660

a, b, ¢, and d are the 4 integration points.

5.2.2.1 Advantages and drawbacks

This element has various advantages:

* No hourglass
» Compatible with powerful mesh generators
e Fast convergence
* No shear locking.
But there are some drawbacks too:
* Lowtime step
* Not compatible with ALE formulation

* No direct compatibility with contact interface aother elements.

5.2.2.2 Time step

The time step for a regular tetrahedron is compated
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L
dat =—= EQ.5.2.2.11
c

Where,Lcis the characteristic length of element dependindetra type. The different types are shown in the
following figures:

For a regular 4 node tetra as shown in Figure 5.2.2

L, = a\E; L, = 0816 EQ.5.2.2.12

Figure 5.2.2 -4 nodes tetra

For a regular 10 node tetra as shown in Figure&5.2.

L. = awf%; L, = 0264a EQ.5.2.2.13

Figure 5.2.3 -10 nodes tetra

For another regular tetra obtained by the assemabtddour hexa as shown in Figure 5.2.4, the chartic
length is:

L.=a

- 24 3; L, = 0204a EQ.5.2.2.14

Figure 5.2.4 -Other regular tetra

5.2.2.3 CPU cost: Time/Element/Cycle
The CPU cost is shown in Figure 5.2.5:
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Figure 5.2.5 -CPU cost in TEC

Tec=6. Tec=4%2.
5.2.2.4 Comparison example

Below is a comparison of the 3 types of elementsd@es brick, 10-nodes tetra and 20-nodes bridkg. résults
are shown in Figure 5.2.6 for a plastic strain oant

Figure 5.2.6 -Comparison (plastic strain max = 60%)
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5.3 SHELL ELEMENTS

Since the degenerated continuum shell element fatioo was introduced by Ahmad et al.[38], it ha&sdme
dominant in commercial Finite Element codes dugstadvantage of being independent of any particsiell
theory, versatile and cost effective, and applieédbla reliable manner to both thin and thick shell

In the standard 4-node shell element, full integratand reduced integration schemes have been tased
compute the stiffness matrices and force vectors:

- The full integration scheme is often used in paogs for static or dynamic problems with impliditnée
integration. It presents no problem for stabiliyt sometimes involves “locking” and computatioms aften
more expensive.

- The reduced integration scheme, especially wite-point quadrature (in the mid-surface), is widesgd in
programs with explicit time integration such as R®B3S and other programs applied essentially in
crashworthiness studies. These elements dramgtoedrease the computation time, and are very ctitivpaf

the hourglass modes (which result from the redutedjration scheme) are “well” stabilized.

5.3.1 Introduction

The historical shell element in RADIOSS is a simplénear Mindlin plate element coupled with a redd
integration scheme using one integration poinis Hpplicable in a reliable manner to both thin amatlerately
thick shells.

This element is very efficient if the spurious sifey modes, called “hourglass modes”, which reguin the
reduced integration are stabilized.

The stabilization approach consists of providingligohal stiffness so that the spurious singularde® are
suppressed. Also, it offers the possibility of @iog some locking problems. One of the first sao$ was to
generalize the formulation of Kosloff and Frazi&éd] for brick element to shell element. It can bewn that
the element produces accurate flexural responss,(ffee from the membrane shear locking) and isvatent
to the incompatible model element of Wilson et[al] without the static condensation procedure.ldiaj47]

extended this work to shell elements. Hughes and22] employed a similar approach and extended fton-
linear problems.

Belytschko and Tsay [23] developed a stabilizetidlament based on thjg projections developed by Flanagan

and Belytschko [12]. Its essential feature is thatrglass control is orthogonal to any linear fieldus
preserving consistency. The stabilized stiffnessajgproached by a diagonal matrix and scaled by the

perturbation parameterlq which are introduced as a regulator of the st#néor nonlinear problems. The

parametersh are generally chosen to be as small as possibléhis approach is often called, perturbation
stabilization.

The elements with perturbation stabilization have tajor drawbacks:
e The parameterk} are user-inputs and are generally problem-depénden

» Poor behavior with irregular geometries (in-plamet-of-plane). The stabilized stiffness (or staeit
forces) is often evaluated based on a regulagflametry, so they generally do not pass either the
Patch-test or the Twisted beam test.

Belytschko et al. [17] extended this perturbatidabaization to the 4-node shell element which basome
widely used in explicit programs.

Belytschko et al. [24] improved the poor behavighibited in the warped configuration by adding aiglng

curvature-translation term, and a particular nqutajection for the transverse shear calculatiorcgmus to that
developed by Hughes and Tezduyar [25], and Macle&}| This element passes the Kirchhoff patch &ext
the Twisted beam test, but it cannot be extendedg®eneral 6 DOF element due to the particulareptimn.

Belytschko and Bachrach [27] used a new metho@éddphysical stabilization” to overcome the firsadback
of the quadrilateral plane element. This methodsisig of explicitly evaluating the stabilized gtéls with the
help of 'assumed strains', so that no arbitraramaters need to be prescribed. Engelmann and WHEE]
have applied it to the 4-node shell element. Arralitive way to evaluate the stabilized stiffnegglieitly is
given by Liu et al. [29] based on Hughes and L44lsode selected reduced integration scheme elef22htin
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which the strain field is expressed explicitly grrhs of natural coordinates by a Taylor-series esioa. A
remarkable improvement in the one-point quadratsiell element with physical stabilization has been
performed by Belytschko and Leviathan [18]. Ther&at performs superbly for both flat and warpednelets
especially in linear cases, even in comparison witimilar element under a full integration schearg] is only
20% slower than the Belytschko and Tsay elementoreMecently, based on Belytschko and Leviathan's
element, Zhu and Zacharia [30] implemented thelimiyil rotation DOF in their one-point quadrature lshe
element; the drilling rotation is independentlyeingolated by the Allman function [39] based on Hegland
Brezzi's [41] mixed variational formulation.

The physical stabilization with assumed strain mdtlseems to offer a rational way of developing at co
effective shell element with a reduced integrasheme. The use of the assumed strains based onixbd
variational principles, is powerful, not only in@sging the locking problems (volumetric locking, mierane
shear locking, as in Belytschko and Bindeman [8&hsverse shear locking, as in Dvorkin and Bag23)[ but
also in providing a new way to compute stiffnesewidver, as highlighted by Stolarski et al. [33]swsed
strain elements generally do not have rigorous datinns; there is almost no constraint for the peselent
assumed strains interpolation. Therefore, a sobadrétical understanding and numerous tests amgedeia
order to prove the legitimacy of the assumed sements.

The greatest uncertainty of the one-point quadeastiell elements with physical stabilization ishwieéspect to
the nonlinear problems. All of these elements wjthysical stabilization mentioned above rely on the
assumptions that the spin and the material pre@gsegie constant within the element. The first agsiom is
necessary to ensure the objectivity principle iargetrical nonlinear problems. The second was adapterder

to extend the explicit evaluation of stabilizedfatiss for elastic problems to the physical nordingroblems. It

is found that the second assumption leads to adtieal contradiction in the case of an elastopdgstoblem (a
classic physical nonlinear problem), and resulgdar behavior in case of certain crash computation

Zeng and Combescure [15] have proposed an imprdvedde shell element named QPPS with one-point
guadrature based on the physical stabilization kwigcvalid for the whole range of its applicatiofsee the
Chapter 5.3.12). The formulation is based largelyhat of Belytschko and Leviathan.

Based on the QPPS element, Zeng and Winkelmullee kdaveloped a new improved element named QEPH
which is integrated in RADIOSS 44 version (see G&ap.3.13).

5.3.2 Bilinear Mindlin plate element

Most of the following explanation concerns four aaalate elements, Figure 5.3.1. Section 5.3.13ainxplthe
three node plate element, shown in Figure 5.3.2.

Figure 5.3.1 -Four Node Plate Element
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Figure 5.3.2- Three Node Plate Element

3

Plate theory assumes that one dimension (the tbgsknz) of the structure is small compared to ttero
dimensions. Hence, the 3D continuum theory is reduo a 2D theory. Nodal unknowns are the velxitie

(Vx’vy’vz) of the mid plane and the nodal rotation ra&a@c«)y) as a consequence of the suppregs#cection.
The thickness of elements can be kept constartawed to be variable. This is user defined. Tleenents are
always in a state of plane stress, &, =0, or there is no stress acting perpendicular topthee of the
element. A plane orthogonal to the mid-plane resarplane, but not necessarily orthogonal as ichHkioff

ov vV
theory, (wheres,, = £,, =0) leading to the rotations rates) = — 3 £ and @, = 5 Z . In Mindlin plate
y X

theory, the rotations are independent variables.

5.3.3 Time step for stability

The characteristic length, for computing the critical time step, referringclk to Figure 5.3.3, is defined by:

L= 22 EQ.53.3.1
max(1342 o

L, = min( 122334411342) EQ.5.3.3.2

L, =maxL,L,) EQ.5.3.33

When the orthogonalized mode of the hourglass geation formulation is used, the characteristicglénis
defined as:

L, =maxL,L,) EQ.5.3.3.4
(L+L)
L, =0. .5.3.3.
4 OSW EQ.5.3.35
L, =min(L,,L,) EQ.5.3.3.6

where hm is the shell membrane hourglass coefficient iitgds the shell out of plane hourglass coefficiest, a
mentioned in section 5.3.8.

5.3.4 Local reference frame
Three coordinate systems are introduced in thedtztion:

 Global Cartesian fixed systenX = (XT +Y] + ZIZ)

« Natural systen(f N,{ ) covariant axes x,y
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¢ Local systems (x,y,z) defined by an orthogonab$emit base vectors (t1,t2,n). n is taken to be
normal to the mid-surface coinciding wigh , and (t1,t2 ) are taken in the tangent plane @fniid-

surface.
Figure 5.3.3 -Local Reference Frame
Zz 1 O 2
y
X
The vector normal to the plane of the elementamtid point is defined as:
XXy
n=——=-—- EQ.5.34.1
x vl
The vector defining the local direction is:
X
t, =Y EQ.5.3.4.2

“T 5T

Hence, the vector defining the local directiondarid from the cross product of the two previousmec

t, =nxt, EQ.5.3.4.3

5.3.5 Bilinear shape functions

The shape functions defining the bilinear elemeseiduin the Mindlin plate are:

®,(&,n) :%(“5 &)a+nn) EQ.5.35.1
or, in terms of local coordinates:

®,(x, y)=a, +bx+c y+d,xy EQ.5.3.5.2
It is also useful to write the shape functionshiea Belytschko-Bachrach mix form [27]:

®,(x,y,én)=0, +b,x+b, y+y,én EQ.5.353
01-Jan-2017
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with
A=l -(x o, -6y by, | t=(1112)
by = (VouYaadis) A (f, =(f, - ,)12)
by = (X (X1 Xo0) ! A
v =|r =0 b, - (Cy o Jras m=(1-11-2)

A is the area of the element

The velocity of the element at the mid-plane refeeepoint is found using the relations:

4
v, =D DV, EQ.5.3.5.4
=1
4
v, =) 0V, EQ.5.3.5.5
=1
4
v, =) ®v, EQ.5.3.5.6
=1
where,V, ,Vy, ,V, are the nodal velocities in thxgy,z directions.

In a similar fashion, the element rotations arenfbby:

4

W, =) 0w, EQ.5.3.5.7
=1
4

w, =) O w, EQ.5.3.5.8
1=1

where &, and @), are the nodal rotational velocities about the ot ymeference axes.

The velocity change with respect to the coordiht@nge is given by:

aVX:4%v EQ.5.3.5.9
’ .5.3.5.
ox 5 ox
4
v, _ 5 0P, ’ EQ. 5.3.5.10
dy 13 oy

5.3.6 Mechanical properties

Shell elements behave in two ways, either memboar®ending behavior. The Mindlin plate elements dra
used by RADIOSS account for bending and transvehsar deformation. Hence, they can be used to model
thick and thin plates.

5.3.6.1 Membrane Behavior

The membrane strain rates for Mindlin plate elemené defined as:

ov,
ox

&, = EQ.5.3.6.1
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o _ov, EQ.5.3.6.2
e .5.36.
. _1fov, 0v, EQ.5.3.6.3
Sy 2\ dy 0x o
! avx+6vzj_1(w+avzj EQ. 5.3.6.4
% "o\ Tox )" 2\ ox o
_1(ov, ov,)_1 v,
o =1 M, - EQ. 5.3.6.5
200z oay) 2 oy

where &; is the membrane strain rate.

5.3.6.2 Bending Behavior

The bending behavior in plate elements is descritsdg the amount of curvature. The curvature rafethe
Mindlin plate elements are defined as:

) :day

- EQ.5.3.6.6
Xx X Q
X, = _9¢4, EQ.5.3.6.7
ay
X _1 99, _ 0w, EQ. 5.3.6.8
vo2lay  ax

where X; is the curvature rate.

5.3.6.3 Strain Rate calculation

The calculation of the strain rate of an individal@ment is divided into two parts, membrane andlgy strain
rates.

Membrane Strain rate

The vector defining the membrane strain rate is:

{. ={e.e, 2¢,} EQ.5.3.6.9
This vector is computed from the velocity field tmc{v}m and the shape function gradie[rB}m :
{e}n ={B}{V}s EQ. 5.3.6.10
where
{V}m = {val‘/ylvifz‘/yZ'Vf'Vf'VfV‘y‘} EQ.5.3.6.11
0, 00, 0 00,
ox ox ox ox
[B].=| © @ o % o 9 o 9% EQ.5.3.6.12
oy oy oy oy
b, 0D, oD, oD, ab, b, 0P, 0D,
| dy oOx 0y ox dy  0x oy ox |
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Bending Strain rate

The vector defining the bending strain rate is:
{¢, = {/vava 2X 28, 2éyz} EQ. 5.3.6.13

As with the membrane strain rate, the bending rstraie is computed from the velocity field vectdowever,
the velocity field vector for the bending straiteraontains rotational velocities, as well as tiaiens:

{¢}, ={B},{v}, EQ.5.3.6.14
where
M, ={ad~ad af ~af of ~a, af —af VAV V2V EQ.5.3.6.15
o0, 00, 0P, o0, 0 o o o
0x 0x 0Xx 0x
0 0d, 0 00, 0 0d, 0 0D, 0 0 0 0
oy ay ay dy

00, 09, 3P, 00, 0B, 9P, 0D, 0B, .,

aq)l aq)z aq)3 aq)4

0Xx 0Xx 0X 0Xx
od, 0d, 0P, 0P,

L dy 9y 9y 9y
EQ. 5.3.6.16

[B]b =

Figure 5.3.4 -Strain rate calculation
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5.3.6.4 Mass and Inertia

Consider a rectangular plate with sides of lersgfimdb, surface area A = ab and thickng&sas shown in Figure
5.3.5.

Figure 5.3.5 -Mass Distribution

z

4 3
? -\,I
b V X
—_—>
1 2
a «—™m

Due to the lumped mass formulation used by RADIABS&)Jumped mass at a particular node is:

:%,OA'[ EQ. 5.3.6.17

The mass moments of inertia, with respect to letainent reference frame, are calculated at nbge

b? +t2
I, = EQ.5.3.6.18
12
| = a’+t? EQ.5.3.6.19
" e .5.3.6.
a’+b?
|, = EQ.5.3.6.20
12

ab
| =-m— EQ.5.3.6.21

Y 16

5.3.6.5 Inertia Stability

With the exact formula for inertia (EQS 5.3.6.1858.6.21), the solution tends to diverge for larggtion
rates. Belytschko proposed a way to stabilize thetion by settind xx = |y, i.e. to consider the rectangle as a
square with respect to the inertia calculation offilyis introduces an error into the formulation.wéwer, if the
aspect ratio is small the error will be minimal RADIOSS a better stabilization is obtained by:

(A t?
Ixx— ?+1—2 EQ. 5.3.6.22

l=1,=I EQ.5.3.6.23

l, =0 EQ.5.3.6.24

wheref is a regulator factor with default valtrel2 for QBAT element ané=9 for other quadrilateral elements.
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5.3.7 Internal forces

The internal force vector is given by:

fint = jB‘aoIQe EQ.5.3.7.1

In elasticity it becomes:

fint = j B'CBvdQ® EQ.5.3.7.2

It can be written as:

hgr

fint — finto + fint EQ.5.3.7.3

int0
with the constant parf nt being computed with one-point quadrature and tr ¢onstant part or hourglass

part f it being computed by perturbation stabilization (lshel, 2 ,3 ...) or by physical stabilization (k&h=
22).

5.3.8 Hourglass modes

Hourglass modes are element distortions that have strain energy. The 4 node shell element has 12
translational modes, 3 rigid body modes (1, 263)Jeformation modes (3, 4, 5, 6, 10, 11) and 3 dlass modes
(7, 8, 12).

Figure 5.3.6 -Translational Modes of Shell
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Along with the translational modes, the 4 nodeIdieed 12 rotational modes: 4 out of plane rotatfades (1, 2,
3, 4), 2 deformation modes (5, 6), 2 rigid bodydeformation modes (7, 8) and 4 hourglass mode$Q911,
12).
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Figure 5.3.7 -Rotational Modes of Shell
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5.3.8.1 Hourglass Viscous Forces

Hourglass resistance forces are usually eitheousor stiffness related. The viscous forces reatatbe rate of
displacement or velocity of the elemental nodesif dse material was a highly viscous fluid. Thesadus
formulation used by RADIOSS is the same as thdinaat by Kosloff and Frasier [10]. Refer to secti®d.5.
An hourglass normalized vector is defined as:

=(1-112-1) EQ.5.3.8.1

The hourglass velocity rate for the above vectaleiined as:

0
% =MV, =V, —Vv,+V;—-V, EQ.5.3.8.2
ot
The hourglass resisting forces at nbdier in-plane modes are:
Ad
fror == ,octJ 9% EQ.5.3.8.3
2 at
For out of plane mode, the resisting forces are:
1 h, o
" == pct 1/ Ar EQ. 5.3.8.4
4 10 ot
where

i is the direction index,

| is the node index,

t is the element thickness,

c is the sound propagation speed,
Ais the element area,

pis the material density,
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hm is the shell membrane hourglass coefficient,

ht is the shell out of plane hourglass coefficient.

5.3.8.2 Hourglass Elastic Stiffness Forces

RADIOSS can apply a stiffness force to resist hiagg) modes. This acts in a similar fashion to tiseous
resistance, but uses the elastic material stiffa@ssnode displacement to determine the size ofdtoe. The
formulation is the same as that outlined by Flanagjaal. [12]. Refer to section 5.1.5.2. The hoasglresultant
forces are defined as:

fh =T EQ.5.3.8.5

For membrane modes:

£ (t+At) = £ (t)+}hmEt%At EQ.5.3.8.6
8 ot
For out of plane modes:
1 aq,
£ (t+At) = " (t)+—h, Et* — At EQ.5.3.8.7
i ( ) i () 40 f at Q
where

t is the element thickness,
At is the time step,
Eis Young's Modulus.

5.3.8.3 Hourglass Viscous Moments

This formulation is analogous to the hourglass aiscforce scheme. The hourglass angular velociy isa
defined for the main hourglass modes as:

or, _ L
E =l =w -, +w;-w, EQ.5.3.8.8
The hourglass resisting moments at nbeee given by:
1 [h or,
o= = L pcAt2—T EQ.5.3.8.9
" Teo 2w N

whereh; is the shell rotation hourglass coefficient.

5.3.9 Hourglass resistance

To correct this phenomenon, it is necessary tadhice anti-hourglass forces and moments. Two pessib
formulations are presented hereafter.

5.3.9.1 Flanagan-Belytschko Formulation [12]
Ishell=1

In the Kosloff-Frasier formulation seen in sectibrl.5.1, the hourglass base vect?qra is not perfectly
orthogonal to the rigid body and deformation motlest are taken into account by the one point iragn
scheme. The mean stress/strain formulation of apmiet integration scheme only considers a fullyeér
velocity field, so that the physical element modegerally contribute to the hourglass energy. Taicthis, the
idea in the Flanagan-Belytschko formulation is tald an hourglass velocity field which always remsi
orthogonal to the physical element modes. Thisbeawritten as:

vior =y -y EQ.5.3.9.1
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The linear portion of the velocity field can be arped to give:

W=y, [v_ + a_” b, )J

Decomposition on the hourglass base vectors giv@s [

a
] P g er
ot ax]
where
oq’ "
6_ are the hourglass modal velocities,

r," are the hourglass vectors, base.

. dv, _ 00, o .
Remembering that— = I [V, and factorizing EQ. 5.1.5.5 gives:
X

axj j

w_, [Er,a _agwj
ot 0

00,
yD ra _ ra
6 Xi
is the hourglass shape vector used in pIacE,"’oﬁn EQ.5.1.5.2.

Figure 5.3.8 -Flanagan Belytschko Hourglass formulation
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1
Pxy = E(yz_y4) Px, = 373

1 1
Py, = §(x4—x2) Py, = %3
hx = (—x2+x3—x4) hy = (_y2+Y3_Y4)
S Y s

I'y = 1-Px hx—Pyhy
I'y = =1+ Pxyhx + Py,hy
'y = 1-Px hx—Pyhy
I'y = =1+ Pxyhx + Py,hy
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5.3.9.2 Elastoplastic Hourglass Forces
Ishell=3

The same formulation as elastic hourglass forcessasl (section 5.3.8.2 and Flanagan et al. [1A]jH®miforces
are bounded with a maximum force depending on tineent element mean yield stress. The hourglase$are
defined as:

fh =T EQ.5.3.9.6

For in plane mode:

£19 (0 +At) = 0 (t)+%hm5t%m EQ.53.9.7
£ (t +At) = min( 19 (t + At), %hﬂayt\/ﬂj EQ.5.3.9.8
For out of plane mode:
hgr = hgr i 3%
£ (t+At) = f, (t)+40hf B At EQ.5.3.9.9
£, (t+4t) = min( "o (t +At),211hfayt2j EQ.5.3.9.10

where:
t is the element thickness,
oy is the yield stress,

A'is the element area.

5.3.9.3 Physical Hourglass Forces
Ishell=22, 24

The hourglass forces are given by:

fimt"%" = jB“‘CB“dee EQ.5.3.9.11

Qe

For in-plane membrane rate-of-deformation, wih= &7 and y, defined in EQ 5.3.5.3:

Y@, X 0 0
[(BP)H]: 0 yey O EQ.5.3.9.12
ney yvex 0
For bending:
0 Y, X
[(BF)H]: ey O EQ. 5.3.9.13
“Nex ney

It is shown in [16] that the non-constant parthef thembrane strain rate does not vanish when aediapment

H
undergoes a rigid body rotation. Thus, a modifiettrin [(Blm) ] is chosen usingZy =) Z' as a measure of
the warping:
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ve, O zZb, 9,

m\H

[(BI)]: 0 yo, zb, 9, EQ.5.3.9.14
vio, ve. zlb,e,+,0,)

This matrix is different from the Belytschko-Leian [17] correction term added at rotational posgi which
couples translations to curvatures as follows:

1
Y, @, 0 0 0 —Zzyqqx

[(B{“)H]: 0 yg, O lezygqy 0 EQ.5.3.9.15

1 1
ne, Y« 0 ZZVQX _Zzy(‘,)y

This will lead to “membrane locking” (the membrasteain will not vanish under a constant bendingliog).
According to the general formulation, the couplilsgpresented in terms of bending and not in teris o

membrane, yet the normal translation component(sBﬂ“) do not vanish for a warped element due to the
tangent vectorg; (E,/]) which differ from #0,0).

5.3.9.4 Full integrated formulation
Ishell=12

The element is based on they4 shell element developed in [40] by Batoz andtDAde element has 4 nodes
with 5 local degrees-of-freedom per node. Its fdatian is based on the Cartesian shell approachrevtie
middle surface is curved. The shell surface ig/fidtegrated with four Gauss points. Due to anlamp reduced
integration for shear, the element shear lockingble@ms are avoided. The element without hourglass
deformations is based on Mindlin-Reissner plateomhavhere the transversal shear deformation isntakeo
account in the expression of the internal energpe feader is invited to consult the reference forardetails.

5.3.9.5 Shell membrane damping

The shell membrane dampindm, is only used for law 25, 27, 19, 32 and 36. ThelSmembrane damping
factor is a factor on the numerical VISCOSITY amd a physical viscosity. Its effect is shown in thamula of
the calculation of forces in a shell element:

dm=dmread in DOO input (Shell membrane damping facesameter) then:

dm=+/2 [@im,,, [p, [¢ 3/ AREA EQ.5.3.9.16

Effect in the force vectoiH) calculation:

Finew = Fioa * d”-(éll %j EQ.5.3.9.17
_ . L &n

anew - F20Id + d”-(gzz +7j EQ.5.3.9.18
_ &

Fanew = Faod + dm? EQ.5.3.9.19

Where: 0, is the density

AREA is the area of the shell element surface
dt is the time step

cis the sound speed
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In order to calibrate thdm value so that it represents the physical viscpsite should obtain the same size for
all shell elements (Cf. AREA factor), then scale fihysical viscosity value to the element size.

5.3.10 Stress and strain calculation

The stress and strain for a shell element can lieewin vector notation. Each component is a stisstrain
feature of the element. The generalized sttaian be written as:

{eh=1e.e, 8, ki k, Ky | EQ.5.3.10.1

where
gj is the membrane strain,

X i is the bending strain or curvature.

The generalized stre@s can be written as:

=N Ny N MMM EQ. 5.3.10.2
t/2 t/2
where: N, = J.dez M, =- J.szdz
-t/2 -t/2
t/2 t/2
N, = Jaydz My:—jayzdz
-t/2 -t/2
t/2 t/2
N,, = Jaxydz M,, =- Jaxyzdz
-t/2 -t/2
t/2 t/2
N,, = Iaﬂdz N,, = J.szdz
-t/2 -t/2

5.3.10.1 Isotropic Linear Elastic Stress Calculatio
The stress for an isotropic linear elastic shelldfach time increment is computed using:

{Zet+at) ={ ) +L{e)at EQ.5.3.10.3
where EQ.5.3.10.4
L, O
L= EQ. 5.3.10.5
0 L
[ Et -VEt ]
2 2 0
1-v¢ 1-v
—VEt Et
L= 0 EQ. 5.3.10.6
Tol1-v 1=V Q
0 Et
L 1+v]
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Et® - VvEt® 0
121-v?) 1201-v?)
L = ~VEr Et° 0 EQ.5.3.10.7
o l121-v?) 121-v?) R
0 Et®
_ 12+v),

E is the Young's or Elastic Modulus,
v is Poisson's Ratio,

t is the shell thickness.

5.3.10.2 Isotropic Linear Elastic-Plastic Stress Gaulation

An incremental step-by-step method is usually usedesolve the nonlinear problems due to elastetigla
material behavior. The problem is presented byékelution of the following equation:

6=C:(e-¢,) EQ.5.3.10.8
— 2 2 . - ~p

f(a,ay)— O,~-0,=0 ; 0,=H¢ EQ.5.3.10.9

f=0 EQ. 5.3.10.10

and £, = i/i EQ. 5.3.10.11
oo

f is the yield surface function for plasticity fossmciative hardening. The equivalent stregg may be
expressed in form:

oz ={o}[Afo} EQ. 5.3.10.12
O, 1 -5 0
with {0} = g, r and [A]=| -2 1 0] for von Mises criteria.
o, 0o 0 3

The normality law (EQ. 5.3.10.11) for associateakptity is written as:

{e.}= O = 2Afo}i = i—p[A]{a} EQ. 5.3.10.13

(o)

Where £® is the equivalent plastic deformation.

EQ. 5.3.10.8 is written in an incremental form:

{0},.. =10}, +{do}={a}, +[Cl{de} -{de,})={o}- igpl [c]Afo},..  EQ.5.31014

y
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Where{a*} represents stress components obtained by ancelastement and(] the elastic matrix in plane
stress. The equations EQ. 5.3.10.8 to 14 leadtairothe nonlinear equation:

f(dsp)zo EQ.5.3.10.15
that can be resolved by an iterative algorithm agfdn-Raphson method.

To determine the elastic-plastic state of a sHelinent, a number of steps have to be performedéalcfor
yielding and defining a plasticity relationshipres-strain and force-displacement curves for icpar ductile
material are shown in Figure 5.3.9.

Figure 5.3.9 -Material Curve

striction
Ao d6/0e = G
34 F
€ « »
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A F striction =

JdF/0d=0
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The steps involved in the stress calculation arfelasvs.
1. Strain calculation at integration point z

The overall strain on an element due to both mengamd bending forces is:

£ =6 —2zx, EQ.5.3.10.16
£,=€ -2, EQ.5.3.10.17
£y =€y = 2, EQ.5.3.10.18
{e}=1e,.6,.6,} EQ. 5.3.10.19

2. Elastic stress calculation

The stress is defined as:

{o}={0,.0,.0,} EQ. 5.3.10.20
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It is calculated using explicit time integrationdatiie strain rate:

{® (t+ at)} = {ot)} + L{e}at EQ.5.3.10.21
[ E vE ]
1—&/2 1—Ev2 0
_| Vv
- = 1-v¢ 1-V° 0
0 0
i 1+v |

The two shear stresses acting across the thickifi¢ss element are calculated by:

E .
a;*z(t+At):ayz(t)+ameyzAt EQ.5.3.10.22

E
dt+At)=0 [t — e At
oL+ a)=0, ) ra e,

wherea is the shear factor. Default is Reissner's vafug'@
3. von Misesyield criterion

The von Mises yield criterion for shell elementsliéfined as:

0.2_

vm

o; +07-0,0,+30; EQ. 5.3.10.23
For type 2 simple elastic-plastic material, thdd/ress is calculated using:

Tyaat) = a+be™ (t) EQ. 5.3.10.24
This equation will vary according to the type ofteréal being modeled.

4. Plagticity Check

The element's state of stress must be checkecdetd &ehas yielded. These values are compared thighvon
Mises and Yield stresses calculated in the prevéep. If the von Mises stress is greater tharyiblel stress,
then the material will be said to be in the plasticge of the stress-strain curve.

Figure 5.3.10 -Plasticity Check

< .
Oym = Gyzel d
Elastic update
YES

Plastic update
NO

A
(o} = {61 {c} = {c""}

5. Compute plastically admissible stresses

If the state of stress of the element is in thestlaregion, there are two different analyses tzat be used as
described in the next paragraph. The scheme usksired in the shell property set, card 2 of tiysui.
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6. Compute thickness change

The necking of the shells undergoing large strainsardening phase can be taken into account bypating
normal strain€_, in an incremental process. The incompressibiljfydihesis in plasticity gives:

deb =—(def, +dep) EQ.5.3.10.25

where the components of membrane strdjr;(px and dé‘ypy are computed by EQ. 5.3.10.13 as:

{ds;;} _de {axx}
p - 2%x2
dey, Iy Ty EQ. 5.3.10.26

The plan stress conditiodd,, = 0 allows to resolve fode,, :

de, =-—2(de, +d£w)+1_ 2

de? EQ. 5.3.10.27
“  1-vu 1-v

zz

5.3.10.3 Plastically Admissible Stresses
Radial return

Iplas=2

When the shell plane stress plasticity flag ists€t on card 1 of the shell property type defimitia radial return
plasticity analysis is performed. Thus, Step 5hef $tress computation is:

The hardening parameter is calculated using thenmahstress-strain curve:

O,40(t)=a+be” (t) EQ.5.3.10.28

g2t = Jm = Fyies
E

where &P is the plastic strain rate.

The plastic strain, or hardening parameter, is didop explicit time integration:
eP(t+At)=£P(t)+£PAt EQ. 5.3.10.29

Finally, the plastic stress is found by the methafdradial return. In case of plane stress this webtis

approximated because it cannot verify simultangotied plane stress condition and the flow rule. fidiewing
return gives a plane stress state:

O yigd

o =—*=0}

g,

vm

EQ.5.3.10.30

Iterative algorithm
Iplas=1

If flag 1 is used on card 1 of the shell properngpet definition, an incremental method is used. SHejg
performed using the incremental method describedMiendelson [1]. It has been extended to plane stres
situations. This method is more computationallyengive, but provides high accuracy on stress Higfon,
especially when one is interested in residual st@selastic return. This method is also recommeénadkeen
variable thickness is being used. After some catoutis, the plastic stresses are defined as:
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el el el el
o +o o -o
ol =—* Ay +—= SAV EQ. 5.3.10.31
i I P
1-v +v
e <] e e
o +o o? -0
gkr=_* Y X EQ. 5.3.10.32
y Ar 3Ar
1+-— =
1-v 1+v
el
o
pa — Xy
T EQ. 5.3.10.33
1+
1+v
EAs?
where Ar=——— EQ. 5.3.10.34
20 44 (t +0t)

The value ofA&” must be computed to determine the state of plastiEss. This is done by an iterative
method. To calculate the value &€, the von Mises yield criterion for the case ofr@astress is introduced:

O +0.-0,0,+30%, = 0hqq(t+1t) EQ. 5.3.10.35

and the values afy, oy, oxy andoyieis are replaced by their expression as a functioAsf (EQS 5.3.8.31 to
5.3.8.34), with for example:

Oaq(t+0t)=a+be” (t+At) EQ.5.3.10.36

and:
£° (t+At)=£P (t)+AeP EQ.5.3.10.37

The nonlinear equation 5.3.10.35 is solved iteedyior As® by Newton's method using three iterations. This
is sufficient to obtainA&" accurately.

5.3.10.4 Plastic plane stress with Hill's criterion

In the case of Hill’s orthotropic criterion, thewdgalent stress is given by:

o, = Aoy + Ao -Ao,o, + A% EQ. 5.3.10.38
A -2 0
with [A] = A 0O
sym Ay

EQ. 5.3.10.14 is then written as:

[BYo}... ={c} EQ. 5.3.10.39
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_1+(Al—%ude (AZU—%de 0
- _A _A . gr=9¢" _E
[B]= (ALU Zde 1+(A2 2 Ude 0 . dR o 1
1-v
_ 0 0 1+=—= AZdR_
Changing the stress variables{tﬁ} ;
{7} =]Qf} EQ. 5.3.10.40
with: ) .
1 A-A+C 0
o)
Q=| 2255 1 ofic=i-oNa-afla-(a+A)f
{2-3)
2
0 0 1
The matrix [§] =[Q][B][Q] " is diagonal:
_ A ;
1+ dR{AZ > 1 J 0 0
[B]= 0 1+ dR(A _AY +£j 0 EQ. 5.3.10.41
2 3,
0 0 1+dR. Az(l “j
2
where J, =1+ Al A +C) is the Jacobian ofJ]. EQ. 5.3.10.40 is now written as:
i)
Bz}, ={z} EQ. 5.3.10.42

This will enable to give explicitly the expressiohthe yield surface EQ. 5.3.10.15:
fou = (02 -0y ={o} 8] [AlB] o}~ (07)

Qe g2 4 A 5 g, -(o"f EQ.5.3.10.43

=2 . Ao~
v By BB, " ’

+

2

=2
XX

NwNI|g>I

With [A]z 2 [Q]zxz[A]zxz[Q]zxz
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The derivative of f.,; is carried out in order to use the Newton-Raphsethod:

:Agp—h
n f!

n+l

AeP

n+l

EQ. 5.3.10.44

5.3.11 Calculation of forces and moments

5.3.11.1 Integration points throughout the thicknes

The integration is performed using n equally spaiceegration points throughout the thickness. Thethad
used assumes a linear variation of stresses betwegmnations points:

n
N, =t> wlok EQ.5.3.11.1
k=1
M _t2 M pa
=D W ok EQ.5.3.11.2
k=1

Table 5.3.1 compares the coefficients used toldesical Newton quadrature in case of 3 integrgpiaints.

wN for 3 integration points | | wM for 3 integration points |

Coefficientd] w1 || we || ws | [Coefficients| w1 || wo || ws |

RADIOSSH 0.250H0.5oq‘ 0.250‘ ‘ RADIOSS || 'O-OBﬁ 0. H 0,083|

Simpson H 0.16%0.66(?‘ 0.166‘ ‘ Simpson || -O_OBHS 0. H 0.083|

- Gauss Integration Scheme
Lobatto Integration Scheme 9
Number of .. .
Number of - . - Position Weight
u pe ° Position Weight Points 9
Points
1 +0.0000000000 2.0000000000
2 +1.0000000000 1.0000000000
3 +1.0000000000 0.3333333333 2 i]/\/§ 1.0000000000
0.0000000000 1.3333333333
0.0000000000
4 +1.0000000000 0.1666666666 3 3 8/9
+0.4472135955 0.8333333333 * A 5/9
+1.0000000000 0.1000000000 1 1
5 +0.6546536707 0.5444444444 N 3-2/65 1.
0.0000000000 0.7111111111 A 7 2 6/65
1 1
3+2/6/5 -
+ 3+ 2/65 2 6/65
-

5.3.11.2 Global plasticity algorithm

In the case of global plasticity, the forces andwants are computed directly. The algorithm is at&d by
specifying the number of integration points througk thickness as zero. The first step is an olvilastic

calculation:
{Ze}={= @)} +L{Eat EQ.5.3.11.3
The yield criterion used is the uncoupled lliouehform [13]:
N? 16M?
F :t—2+t—4—ajie|d <0 EQ. 5.3.11.4
with
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N2 — 2 2 2
N2=N2+NZ2-N,N, +3N2

N2 — 2 2 2
M2=M2+M2-M M, +3M2

where
t/2
N, = Iaxpadz
-t/2
t/2
— pa
N, = Jay dz
-t/2
t/2
— pa
N,, = '[axy dz

-t/2

t/2
M, = Jax"azdz

-t/2

t/2
— pa
M, = Jay zdz

-t/2

t/2
— pa
M,, = '[axy zdz
-t/2

EQ.5.3.115

EQ.5.3.11.6

An extension of lliouchine criterion for isotropicardening is developed here. The yield surface lman
expressed as:

f= {{{u}}}t[F]{{{u}}} ~(o°8f =0 EQ.5.3.11.7
L1 Zﬁ(;hzj ]
with: [F|= 1 EQ.5.3.11.8
sym W[ ]
i 6 i
and s= INFlAfM} EQ.5.3.11.9

{N}{Afm}

Where 8 and y are scalar material characteristic constants, timcof plastic deformation. They can be
identified by the material hardening law in purgction and pure bending:

. EQ.5.3.11.10

In pure traction f :l:—: —(a;’ﬁ)z =0 = ay(gp)
y

2

~(o2pf =0~ y=—"

= EQ.5.3.11.11
o,h?/6 Q

In pure bending f =—
e r6f

ay/E+§£p

If no hardening law in pure bending is usgdjs simply computed k jy = E+e’ varying between 1.0
g I3
y

and 1.5.

The plasticity flow is written using the normaligw:
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L
S\

The equivalent plastic deformatiaa’ is proportional to the plastic work. Its expressie the same as in the
case of traction:

o, e’ = { } {{N}} =2dA (a?ﬁ)z EQ.5.3.11.13

This leads to:

de? =2dAo)B and d,B:iod,sp EQ.5.3.11.14
o
y

where H is the plastic module. The derivative of functiébnin EQ. 5.3.11.7 is discontinuous when
{N}t {A}{M } =0. This can be treated when small steps are usedtting s=0 as explained in [87].

Then the derivative of with respect tode” (

3de” ) is carried out. The derived equation is nonlingar
I3

internal efforts and is resolved by Newton-Raphson:

.4 o]

where D] is the elastic stiffness matrix and:

{{{l\ljll}i} ) {{{u}}} _[D]{Ej} EQ.53.11.16

5.3.12 QPH, QPPS, QEPH and QBAT shell formulations

QPH shell is the Belytschko Leviathan [17] shell foear models or quasi-static analysis is ideaitio a QPPS
shell analysis, only one difference being explaimeskection 5.3.12.2.

The QPPS shell is a new One-point Quadrature, @ehamlinear Quadrilateral Shell Element with Plegsi
Stabilization. This shell is a Belytschko Leviattjafi] shell modified by Zeng and Combescure [15].

The physical stabilization is applied which enalifes explicit evaluation of the stabilizing forceased on the
general degenerated shell formulation and whicls dae require any input parameters. An optimizeoiagh of
the moduli is made in order to compute the stadiliforces for nonlinear material so that elemeyglsavior is
improved with respect to similar physical stabiliea elements. The cost efficiency of the element i
demonstrated by numerical examples, as comparédanitlly-integrated 4-node element.

The QEPH shell is a new improved element with respe QPH,QPPS. The improvements will be explaimed
section 5.3.12.2. As the QEPH is very efficienteplaces QPH,QPPS in the applications.

The QBAT shell is a new fully-integrated 4-nodeneémt based on Q424 shell of Batoz and Dhatt [40] as
discussed in section 5.3.9.4.

The general formulation of the degenerated contimguadrilateral shell (for which all these elememted) is
given in the section 5.3.12.1. The difficultiesamaluating the stabilized stiffness are also dbedri Section

5.3.12.2 presents the detailed formulations for ahe-point quadrature shell element based on timerge
formulation, and compares it with that of Belytsotdnd Leviathan.
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5.3.12.1 Formulations for a general degenerated 4de shell

The following formulations of degenerated quadefat shells are based on the successful full iategr
element MITC4 developed by Dvorkin-Bathe [32] and 24 developed by Batoz and Dhatt [40]; they are

suitable for both thin and thick shells and areliapple to linear and nonlinear problems. Their migature is
that a classical displacement method is used &rpotate the in-plane strains (membrane, bendiagd, a
mix/collocation (or assumed strain) method is useithterpolate the out-plane strains (transversagh Certain
conditions are also specified:

e They are based on the Reissner-Mindlin model,
* In-plane strains are linear, out-plane strainséivarse shear) are constant throughout the thickness
» Thickness is constant in the element (the normdlthe fiber directions are coincident),

* 5 DOF in the local system (i.e. the nodal normatees are not constant from one element to
another).

A - Notational conventions
* A bold letter denotes a vector or a tensor.

« An upper case index denotes a hode number; a loagerindex denotes a component of vector or
tensor.

» The Einstein convention applies only for the repdahdex where one is subscript and another is
superscript, e.g.:

N X' => N x".

* {} denotes a vector and [ ] denotes a matrix.

B - Geometry and kinematics

Figure 5.3.11 -Coordinate systems

I, +
1 o
Mid-plan

The geometry of the 4-node degenerated shell elermgshown in the Fig 5.3.11., is defined by itd-surface

with coordinates denoted b p interpolated by the node coordinzm\,(sI (1=1,4):
Xp(&.7)=N,X' EQ.5.3.12.1
where N, (E,/]) are the bilinear isoparametric shape functiongmgby:

N, (&,7)=@+¢& ENa+nn)ia EQ.5.3.12.2

A generic point g within the shell is derived frgraint p on the mid-surface and its coordinate alitregnormal
(fiber):
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Xq(&,7,¢)=Xp+zln with z=2% EQ.5.3.12.3

wherea is the shell thickness.

The transformation between the Cartesian systenttandlatural system is given by the differentidhtien (in
matrix form):

(b =(F ]+ Aot o} (oMo =[FYee) Q. 53124

with
[F]=HoHo.}s{rdfaule.m) =X, =N, X grEm) =X, , =N X
F is the gradient tensor which is related to theB&mn tensor[J] = [F]t :

With 5 DOF at each node | (three translational eities V' — \/iI and two rotational velocitieéa) - a’|| )
the velocity interpolation is given by the Mindlmodel:

v (Em.0)=v, +ZB=N,(&n)Vv' +28') EQ.53.125
B=axn
where3 and & are the rotational velocity vectors of the nornfhk= 3,t, +B,t, = a,t; —at,

and (ti,tz,n) is base of the local coordinate system.

EQ. 5.3.12.5 can be written also by:

v, =NV +Z(- Nty +Naitl); =13

This velocity interpolation is expressed in thehbglbsystem, bute' must be defined first in the local nodal

coordinate system to ensure Mindlin's kinematicdion.

C - Strain-rate construction

The in-plane rate-of-deformation is interpolatedioy usual displacement method.

The rate-of-deformation tensor (or velocity-strih3 = (Lt + LTI)/Z is defined by the velocity gradient tensor
L:

o= L e =L T e = Lo = el JoT o o sas
with [Q] = [{tl}{tz}{ n}] :

The Reissner-Mindlin conditions, = 0 and g, = 0 requires that the strain and stress tensors an@uted in
the local coordinate system (at each quadratumg)poi

After the linearization oL with respect t@, the in-plane rate-of-deformation terms are gilogn

L =[]+ 2La]

with the membrane terms:

[Lo]=[c]c)]

the bending terms:
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— gZ mi/] _gl mv] tl [B’.{ tl [B!/]
[le]_ZH[LSO]+[C1]|:_gzm,g ¢, [C,]+ LB, 4B, EQ.5.3.12.7

where the contravariant vectog?(a :1,2), dual tog, , satisfy the orthogonality conditiorg"mgﬂ = 5/‘3’

o

(Kronecker delta symbol)H (5,17) is the average curvatur@H = —(glzn,{ +gzcn,”)

t gt t, v, t v,
[Co]{ 1@2 2 @2} and [Cl]:{ e 1w "} EQ.5.3.12.8
t1 @ t2 @ t2 B/p’f t2 B/pU]

The curvature-translation coupling is presentethinbending terms for a warped element (the fivstterms in
last EQ.)

The out-plane rate-of-deformation (transverse ghisainterpolated by the “assumed strain” methotjcW is
based on the Hu-Washizu variation principle.

If the out-plane rate-of-deformation is interpotaia the same manner for a full integration scheimeill lead

to “shear locking”. It is known that the transvesdear strains energy cannot vanish when it isestdyj to a
constant bending moment. Dvorkin-Bathe's [32] nol@xation method has been proved very efficient in
overcoming this problem. This method consists iteripolating the transverse shear from the valuethef
covariant components of the transverse shear steti mid-side points. i.e.:

Ve = [(1"7)V5A1 + (1+/7)V5AZJ/2 EQ.5.3.12.9
v, = [(1‘5)%81 +(1+f)%82]/2 EQ. 5.3.12.10

Where y{Aa,y,}Ba are the values of the covariant components at d-sidie points which vanish under a
constant bending moment (see Figure 5.3.12).

Figure 5.3.12 -Covariant components at 4 mid-side

A2

D - Special case for one-point quadrature and the difficulties in
stabilization

The formulations described above are general ftr thee full integration and reduced integrationesols. For a
one-point quadrature element, you have the follgvgarticularities:

The quadrature point is often choser(ét: on= O). The derivatives of the shape functions are:
N, =(& +hn)ia N, =(n +h&)/4 EQ.5.3.12.11

Whereh, =(1 -1 1 -1).

01-Jan-2017 53



RADIOSS THEORY Version 2017 ELEMENT LIBRARY

This implies that all the terms computed at thedgature point are the constant parts with resmeéfm), and
the stabilizing terms (hourglass) are the non-comgarts.

The constant parts can be derived directly from dgeeeral formulations at the quadrature point witho
difficulty. The difficulties in stabilization lien correctly computing the internal force vector &iiffness
matrices):

f int :Jgt W dQ=f int (C( =n= O)+ fiir;tb EQ. 5.3.12.12
Q

It would be ideal if the integration terrﬁ;':b could be evaluated explicitly. But such is not tase, and the
main obstacles are the following:

For a non-coplanar element, the normal varies @t paint so that it is difficult to write the nomistant part of
strains explicitly. For a physically nonlinear pleim, the non-constant part of stress is not gelyeialan
explicit form. Thus, simplification becomes necegsa

5.3.12.2 Fully-integrated shell element OBAT

QBAT is a fully-integrated shell element based lve general formulation described above. In theaserbf
each element, 4 Gauss points are used to evaheatetal forces.

The main modifications with respect to P24 shell element [40] are the following:

* Reduced integration for in-plane shear (constangvbid locking.

» Co-rotational coordinate system is used and tlsstis are evaluated in 4 local systems at eacts Gaus
points..

5.3.12.3 The new one-point quadrature shell element

In this section, a one-point quadrature shell el@nfirmulation will be developed from the geneminfiulation
described in the previous section. It is basedhenPthysical Stabilization method which explicitpneputes the
stabilization terms in making some simplifications.

The following formulations will be written in theodal coordinate systent[t, n] (the circumflex in the co-
rotational system notation has been omitted foveaience).

A - Kinematic approximation

The velocity interpolation using the nodal tangesttors (t'l,t'z) complicates the strain computation, especially

for transverse shear which is used mainly as alfyefuanction. To be consistent with the one-pointadrature
approach, the kinematic approximation is perforrogd

v, =N, [vi' + z(—ciich)l' +0,00) )J EQ.5.3.12.13
where cT)I' (i=1,2) is the nodal rotation velocity arouﬂih. CT)I' can be computed by a projection scheme by :

@ =0 -( @' =P o EQ.5.3.12.14

The projection consists in eliminating the nodallidg rotations in order to reinforce Mindlin's nématic
condition at the nodes. It has been pointed out fi& without this projection, the element is titexible and
cannot pass the Twisted Beam test.

This projection has a drawback of changing theriavee property to rigid body motion, i.e.: a watpgement
being invariant to rigid body rotation will now ains under to rigid body rotation if the drill pegjion is
applied. To overcome this problem, a full projectigroposed by Belytschko-Leviathan [66] which fegther
drilling rotation or rigid motion should be usechi3 full projection is only used for QEPH element.
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B - In-plane strain-rate construction

Constant part

It is useful to write the shape functions in Betytko-Bachrach's mixed form:

N, (x,y.én)=4, +b; +b} +y,@ EQ.5.3.12.15
with: A, :[t, —(t,x')bXI —(tI y' )by,J; t, =(1111)
b, = (y24Y31y42Y13)/A;by| = (X42X13X24X31)/ A (ﬁj = (ﬁ - fj)/Z)

v =|h = o, =(hyy o, 14 0=81

Ais the area of element.

The derivation of the shape functions is given by:

Nl,a :bal +y|¢,a(a = X’ y)

where:

¢1x :nf,x +f’71x: ‘]1_11,7+‘]l_21

S EQ.5.3.12.16
@, :”fvy"'f’?!y =Jan+ 3y

The advantage of this shape function form is thdihear field expressed with Cartesian coordinaad a
bilinear field expressed with Natural coordinatesiecomposed so that the constant part is dirémtigulated
with the Cartesian coordinates, and the non-cohgtamis to be approached separately.

The in-plane rate-of-deformation (decomposed on brarme and bending) is given by:

{D}={p"}+ 4D’} =[B v} EQ. 5.3.12.17
with:

1B |=|B"|+4B|; <V, >=<viVV.@l@! >.

X'y'z
The development of the general formulations leadbé constant part, denoted by superscript hefriatrix
[B]:

b, 0 0 b 0 0 0 b,
[(B{")Olz 0 b, O [(Bb)o]z 2H [(B,m)°]+ 0 b; 0 -b, O0|EQ.531218
b, b, O by by 0 -b, b,
with
<by >=4z,/A’<b,;b,;b,;b, >

< b;l >= 4Zy/A2 < bx4 ’ bx3 ’ bx2 ’ bxl >

The parameteZ, = J, Z' is a measure of the warping of the element.
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The first term 2Hl(B,m)OJ is neglectable. You have verified that the ordér2é l(Blm)OJ is £ times the

second term ol{(Bb)OJ with &€ =2X,,/Y,, (fij
rectangular. Thus, this term is not used in therzm.

:(fi + fj)/Z), which vanishes when the element is

The constant part of the in-plane rate-of-defororatormulation without théd term is consistent with the result
of Belytschko's family shell element [24], [17],0tigh this part has been obtained in a very differeanner.
Letellier has given the same result in his thed4B],[and studies were also made of the quadratinstevith
respect t@.

Non-constant part

The main simplification for the non-constant pastrfiulation, in order to overcome the difficultiessdribed
above, is the following:
The element is considered to be flat.

In this case, the Jacobian matrix is written as:

[LBl=[F] =|x, v, O |= [ - /25} EQ.5.3.12.19
0 0 aJ, /2] 0
with the determinant) of the in-plane Jacobian:
J=def{d]=3,+36+3y EQ. 5.3.12.20

and:

J, = [(E, X' )(/7, y' )— (/7I X' )(EI y' ) /16=A/4
3 :l(fl X )(h| y' )_(hl S )(<t| y' ) /16
J, = [(h, x' )(/7, y' )— (/7, x' )(h, y' ) 116

The inverse of the in-plane Jacobian matrix caexXpgessed explicitly:

AR e i

You can now write the non-constant part, denotedsiyyerscriptH, of the matrix Bj] for in-plane rate-of-
deformation:

EQ.5.3.12.21

| VO 0 0 ) 0 1o,
[(Blm) ]= 0 vye, 0 [(B.b) ]= Vi, 0 EQ.5.3.12.22
Vi@y Vo, O “Nox Ve,

It is shown in [16] that the non-constant part afmfbrane rate-strain does not vanish when a wareadeat

H
undergoes a rigid body rotation. Thus, a modifiextrin [(Blm) J is chosen:
Vo, 0 z,b, @,
m \H
[(BI ) ]: 0 ye, zb,q, EQ.5.3.12.23
vo, ne. zb.e,,0,)

This matrix is different from the Belytschko-Lewian correction term added at rotational positiomsich
couples translations to curvatures as follows:
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1
VALY 0 0 0 _Zzymx
ler) - :
B, = 0 ye, O Zzyw,y 0 EQ.5.3.12.24
Ve, Ve, O 12(0, —12401
1y 1 77 x 4 yTIx 4 yry

This will lead to 'membrane locking' (the membrat®in will not vanish under a constant bendingliog).
According to the general formulation, the coupliagresented in the bending terms not in the menebtarms,
yet the normal translation components Bi"js do not vanish for a warped element due to theemngectors

ti (,17) which differ fromt; (0,0).

C - Out-plane strain-rate construction

The out-plane rate-of-deformation (transverse gheanterpolated by the Dvorkin-Bathe method, wéoksed
form is given by Belytschko-Leviathan:

{ } [B.] ; EQ.5.3.12.25
@,
where; [Blc] Z,I] [B,C J +|.B,C{J
EP-t[9va -Ehahyy (& hahyx
“TULeAl-ap X & (& +hg Iy = (& +hyp JpxXX
B {— 4¢, >|/'/7. (7, +h& )EkykkyJJ ~(7, +hy¢& )Ekxk/kﬂ £O. 5.3.12.26
16A 4<(|y’7| _(’73 +h3<(| )Ekx y (’73 +hJEI)EkX X

and (Blc”)H = (Blcn)om(Blcg)H = (Blc{)of

The straightforward form o] is obtained using one additional simplification:

¢,(&.n)=¢,(00),(&.1)=n,(00)

which is true for a parallelogram element. Althougts simplification is not necessary, it is juif by the fact
that the transverse shear terms serve mainly asalty function.

D - Explicit integration of the nodal internal force vector

Elastic case

The elementary nodal force vector is computed by:

{tm}= I8 1lclB, v}

Taking advantage of substantial orthogonality betwe
» the constant in-plane fields along with the nonatant ones
» the membrane and the bending
» the in-plane fields and the out-plane fields

» the decomposed non-constant out-plane fields
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resulting in:

(d={m P

int \0
With {(f,'"t) } the constant part being computed with one-poiadgature, and

int \H 4 _ H HY 3
() =1 e Tiele, ) fwlav
It can be shown in the last equation that onlyftilewing scalar functions need to be integrated:

H, = [Ap.pdAH, =[ A0, dAH,, =[ Ap@dA EQ.5.3.12.27

These can be evaluated explicitly.

Defining 6 hourglass generalized rate-of-defornmatp by:

m _ | |
membrane {q?n - V|le +7h, VZI EQ.5.3.12.28
Qy = ylvy + ZlbyIVz
b |
benmng{qb_yﬂ? EQ.5.3.12.29
dy = N

a; =ahv =[ (&Y' ) +(hy' )t @i +[ (&X' ) +(hix' )t |,
shear : EQ. 5.3.12.30
2SS | | | | | | |
Q§ =4hyv, _|:(I7I y )EI +(h| Yy )tl :|wx +[(’7|X )EI +(h|X )tl :|wy
The rate-of-deformations will be written explicitly
The rate form of the constitutive relation is waiitas (stress plane for in-plane terms):
¢=CD
With the assumptiorthe spin is constant within the elementthe objectivity principle will be satisfied. The
incremental computation is performed with the htasg generalized rate-of-deformatip i.e.:

(q)n+1 = (q)n + anAAt
2

Noting that if ¢,, is considered as constant over a time step, gsivalent to the incremental stress
computation.

Physical nonlinear case
You will now consider an elastoplastic problem.

The elementary nodal internal force vector is nomputed by:
int{ _ t e
{fl } - J:,e[BI ] {U}dV
The constitutive relation is written by either agant form:g = C'D,ora projection formo = P(ae,...),

where C' (a ,) is the history-dependent tangent tens&aeﬂ} :{Un}+[C]{Dn+l,2}At is the trial stress,

n
and the functior® consists of projecting the trial stress on theatied yield surface.

The decomposed form of the last equation is written

R (IR (N
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The constant part is computed by integration ah éaegration point through the thickness.
The stabilization part will be approached by refyon two hypotheses:

» Keep the same orthogonalities as in the elastie, casl

Use the unidimensional tangent moduE‘s(Z) to evaluate the non-constant rate-stress, i.e.:

{o}" =(E(¢)E)[c)D}" EQ.5.3.12.31

whereE is the Young's modulus ar{ﬂl] is the matrix of elastic moduli.
Thus, the elastic case easily extends to the resnlioase.

The incremental computation with the hourglass gdized rate-of-deformatio] becomes:

membrane: (q”‘)n+1 = (qm)n + A Gy oA EQ.5.3.12.32
bending : (qb)n+1 = (qb)n + A, 00, EQ. 5.3.12.33
shear : (qs)n+1 = (qs)n + Q0 EQ.5.3.12.34

Where E(Z) is obtained by the constant stress incrementalpatation along the thickness arfr] (Z) =E
in the elastic zone, and,, = E, / E; E, is the average value &, (') and A, =minE,(¢)/E.

For the QPH shellAm =1

The key orthogonalities has been maintained witlaowyt significant deterioration in performance, altgh the
first two orthogonalities might have been slightlglated. In fact, it is simply due to these ortbaglities that a
one-point quadrature element dramatically redutes domputation cost; otherwise you return to thi fu
integration scheme.

Most of the physical stabilization elements haveiporated the following assumption:
The material responseis constant within the element.

There are two alternatives to this assumption:

+ to take the elastic matrix [C] directly:

{o}={o¥ +[cHe-e7)' }={od +[cfle)} - )} =0
which means that the plastic rate-of-deformal{é‘ﬁ} is constant within the element; or

+  to take the tangent matrix [C'] (¢ =7 =0 ,{ = constant

Since the components of [Gre generally functions of the updated stresedipely, the stress deviator for an
elastoplastic problem with an associative flow yukaich means thahe stress is constant within the element.

Neither of these alternatives is theoretically getfLet us note that the [C] option results iroatcadiction with
the stress computation (which yields different hessfor the constant part and the non-constani);piais more
expensive and the tangent form is not generallg iseconstant stress computations within an ekpgdiogram.
Hence, the approximation based on the above asgmiptnot necessary.

The choice of the moduli for the nonlinear case matsbeen studied for Belytschko-Leviathan's elenjign],
and it has been shown that this choice has liffeceon the result of the “Cylindrical panel teskh [30], the
elastic tangent matrix has been used for the etratuaf the stabilizing forces.

QPH,QPPS have shown often stiffer behaviors andesoms have certain numerical problems in crash
simulations.
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5.3.12.4 Advanced elasto-plastic hourglass control

QEPH (Quadrilateral ElastoPlastic Physical Hourglas Control) element

With one-point integration formulation, if the naoenstant part follows exactly the state of constamt for the
case of elasto-plastic calculation, the plastichiji be under-estimated due to the fact that thestant
equivalent stress is often the smallest one iretement and element will be stiffer. Therefore,irdef) a yield
criterion for the non-constant part seems to bealddea to overcome this drawback.

From EQ. 5.3.12.16 and EQ. 5.3.12.21, you haveateeof stresses of non-constant part:

MM o O
{o}" =[cKe}" =[Cho,ay t =niog,  +&0% EQ.5.3.12.35
0 0 0

Where @ = m,b corresponds to the membrane and bending termsatesgy. Note that the shear terms are
eliminated to avoid shear locking. The transvelsmasterms can also be written as the same way:

{r}" =n{7“’}+f{7*‘*} EQ.5.3.12.36
Tyfl TYC(

You can now redefine 12 generalized hourglasss#eeby integrating their rate ones, and the stielgiscan be
expressed by:

a a

Oy, O,
Membrane, bending{ai”}={(7ia}0 +{Ui”}H ={Ui”}0 +150y, r+ &0y
0 0

s} ={e ) +{e )" =} 0] ]

yn

Even the redefinition for shear is not necessarif @snot included in the plastic yield criteriobyut the same
stress calculation as the constant part with tigatgul Lagrangian formulation is always useful wizgge strain
is involved.

Plastic yield criterion:

The von Mises type of criterion is written by:

f=0i(n{)-0;=0 EQ. 5.3.12.37

for any point in the solid element, whee®, is evaluated at the quadrature point.

As only one criterion is used for the non-constaatt, two choices are possible:
. . — \= 1
« taking the mean value, i.ef = f O} Oq :—Jaequ
Q Q

» taking the value by some representative points,eggit Gausse points

The second choice has been used in this element.
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Elasto-plastic hourglass stress calculation:
The incremental hourglass stress is computed by:

» Elastic increment

(Ui )trH = (Ji ): +[C]{€}H At

ntl —
*  Check the yield criterion

« If f =0, the hourglass stress correction will be doneyadlial return

(@)= P((Ji S f)

5.3.13 Three-node shell elements

As for the four node shell element, a simple lingiémdlin Plate element formulation is used. Likeajishe use
of one integration point and rigid body motion givby the time evolution of the local reference fears
applied. There is no hourglass mode in case ofrdegration point.

5.3.13.1 Local Reference Frame

The local reference frame for the three node sghethent is shown in Figure 5.3.13.

Figure 5.3.13 -Node Shell Local Reference Frame

Cah | :

| -I
C_o_-.»& Xt

X

The vector normal to the plane of the element isdd as:

X
n=-9%9% EQ.5.3.13.1
l9.xg,|
The vector defining the local x direction is defires edge 1-2:
t _ gl E
L S Q.5.3.13.2
ol
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Hence, the vector defining the local y directiofiadsnd from the cross product of the two previoasturs:

t, =nxt, EQ.5.3.13.3

5.3.13.2 Time Step
The characteristic length for computing the critibae step is defined by:

2area
L= - EQ.5.3.13.4
ma;f 12,2331)

Three Node Shell Shape Functions

The three node shell has a linear shape functiefisedl as:

¢ =a +thx+cy EQ.5.3.13.5
¢ =a, +hx+cy EQ.5.3.13.6
¢ =a; +hXx+cyy EQ.5.3.13.7

These shape functions are used to determine tbeitsefield in the element:

3
Vi = Z AVy EQ. 5.3.13.8
=1
3
vy = Z(HVyu EQ. 5.3.13.9
1=1
3
Vv, = ZWVa EQ. 5.3.13.10
1=1
3
w, = ZQ% EQ.5.3.13.11
=1
3
w, = Z(H% EQ. 5.3.13.12
=1
3
%‘;x - Zaa_ivxl EQ. 5.3.13.13
=1
3
%\;X = Z%—?qu EQ.5.3.13.14
=1

5.3.13.4 Membrane Behavior

The method used to calculate the membrane behamibthe membrane strain rates is exactly the santieaa
used for four node shell elements (see sectio$.3.)3.

5.3.13.5 Bending Behavior

The bending behavior and calculation of the benditngin rates (or curvature rates) is the exactesarathod
used for four node shell elements (see sectios.2)3.
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5.3.13.6 Strain Rate Calculation

The strain rate calculation for the three node lsisethe same as the method used for the four rebadi.
However, only three nodes are accounted for. Thika®m the vectors and matrices smaller. The overall
membrane strain rate is calculated by:

{¢.=1e.&,2¢,} EQ.5.3.13.15
M =V V2 V2 V2V EQ.5.3.13.16
{4, =[8].{\, EQ.5.3.13.17
where the[B]m matrix of shape function gradients is defined as:
ox ox
[B],=| o 99 o 98 , 92 EQ.5.3.13.18
oy oy oy
99 99 9¢ Odp Odp 04
|0y Ox o0y Ox 0y OX |
Wherea—% =0 for a shell element.
ox
The overall bending strain or curvature rate is potad by:
{8, :{kx,ky 2K, 28, ,zeyz} EQ. 5.3.13.19
My ={ed -t o ~afad,~af VNPV EQ. 5.3.13.20
{8, =[Bl.{v},, EQ.5.3.13.21
where:
ox ox
0 %4 o 9% , 94
ay oy oy
og 09 0@ J¢p 0J¢ 04
Bl=|l— — — — — — EQ. 5.3.13.22
[] dy O0x 09y O0x 0y O0Xx Q
g 0@ 04
0 0 o = == =
@ ¢ @ gx aax gx
@ o og
0 0 0 - J=
@ “ 2y oy oy

5.3.13.7 Mass and Inertia
The three node shell element is considered aseameslt with a lumped mass. Its mass is defined as:

m= pAt EQ. 5.3.13.23

where:

P is the material density,

t is the shell thickness,
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A'is the reference plane surface area.

The mass moment of inertia about all axes is theesa

2A t?

o =m —+— EQ. 5.3.13.24
6 12
l,=1,=1, EQ.5.3.13.25
IXy =0 EQ. 5.3.13.26

When nodal masses need to be calculated, thebditm is determined by the shape of the elemeshawn in
Figure 5.3.14.

Figure 5.3.14 -Mass distribution

3

The mass and inertia at nodare given by:

a.
=—m ; |i =] EQ. 5.3.13.27
7l 71

5.3.14 Composite Shell Elements

There are three different element types that caumsked for modeling composites. These are:
« Type 9 Element Property - Orthotropic Shell
» Type 10 Element Property - Composite Shell

« Type 11 Element Property - Composite Shell withalale layers

These elements are primarily used with the Tsairiddel (material law 25). They allow one global babaor
varying characteristics per layer, with varyinghatropic orientations, varying thickness and/owjirzg material
properties, depending on which element is usedti€|gplastic and failure modeling can be undenake

5.3.14.1 Transformation matrix from global to orthatropic skew

If the element reference is defined by the axe¥ And the orthotropy directions by axes 1-2, write:

Figure 5.3.15 -Fiber orientation

Y,
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o -
}with ¢ =co® and s = sif.
C

e Eo|_[C s|lec ex]lc - c0.5.314.1
&, En| |mS C] ey & s c©

e, &,] [ c s|[clk, +s&, -sk& +ce
N o S EQ. 5.3.14.2
(& €| |TS C| [ClEyy ts& —slEy teg
(&, &, | Pk, +2cse,, +S, -cslE, + (Cz _ SZ)-fo +csé, f0. 55,143
(&, &, |-CslE + (c2 - sz).e,-"XY +CSE, S2.£, —2CSE,, +CE, T
The strain-stress relation in orthotropy directigaritten as:
{g}=[cle} EQ.5.3.14.4
4 Va
1 Ell EZZ 0
S R
[c]*=|2 & o EQ.5.3.14.5
1
0 0 &
(0)=(0,, 0, 0p) ; (&)=(e, &, &) EQ.5.3.14.6

The computed stresses are then projected to threataeference:

o o -s|lo,, O, c s

[ XX XY} :{ }EE “ 12}[% } EQ.5.3.14.7
Oy Oy s cl||o, 0,||-s ¢
5.3.14.2 Composite modeling in RADIOSS

RADIOSS has been successfully used to predict #fevior of composite structures for crash and impac
simulations in the automotive, rail and aeronatifivdustries.

(¢}

The purpose of this chapter is to present the uaraptions available in RADIOSS to model composiasswell
as some modeling methods.

Modeling composites with shell elements

Composite materials with up to 100 layers may beletex, each with different material propertiesckhiess,
and fiber directions.

Lamina plasticity is taken into account using theaifWu criteria, which may also consider straire reffects.
Plastic work is used as a plasticity as well asungocriterion.

Fiber brittle rupture may be taken into accountdth orthotropic directions.

Delamination may be taken into account throughraatge parameter in shear direction.

Modeling composites with solid elements

Solid elements may be used for composites.
Two material laws are available:

- Solid composite materials: one layer of composigemodeled with one solid element. Orthotropic
characteristics and yield criteria are the samshali elements (see above).

- A honeycomb material law is also available, featyuser defined yield curves for all componeritthe stress
tensor and rupture strain.
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Solid + shell elements

For sandwich plates, if the foam or the honeycosnberry thick, it is possible to combine compostells for
the plates and solid elements for the sandwichf{gage below).

\ Upper and lower

Foam or honeycomb : solid element S~ plate : shell elements

e

5.3.14.3 Element orientation

A global reference vectov is used to define the fiber direction. The directin which the material properties
(or fiber direction) lay is known as the directidrof the local coordinate system of orthotropyisitiefined by
the @ angle, which is the angle between the local divact (fiber direction) and the projection of thielgal

vector V as shown in Figure 5.3.16.

Figure 5.3.16 -Fiber Direction Orientation

The shell normal defines the positive direction §or For elements with more than one layer, multiglengles
can be defined.

The fiber direction orientation may be updatedwoy tlifferent ways:

1. constant orientation in local corotational refeeerftameconstant orientation in local isoparametric
frame. The first formulation may lead to unstabledels especially in the case of very thin shellg.(e
airbag modelling). In Figure 5.3.17 the differermetween the two formulations is illustrated for tteese of
element traction and shearing.
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Figure 5.3.17 -Fiber Direction Updating

Formulation 1

=

Shear % / /
Formulation 2 /

Formulation 1 F

\ 4
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v
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. F -“
Traction % a

<— e >
Formulation 2 :

v

5.3.14.4 Orthotropic shells

The type 9 element property set defines orthotrepéll elements. They have the following properties

1. Only one layer.

2. Can have up to 5 integration poirtisrough the thickness.
3. One orientation.

4. One material property.

5.3.14.5 Composite shell

The type 10 element property set defines compehigdl elements. They have the following properties:

1. Up to 100 layers can be modeled.

2. Constant layer thickness.
3. Constant reference vector.
4. Variable layer orientation.

5. Constant material properties.

Integration is performed with constant stress itistion for each layer
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5.3.14.6 Composite shell with variable layers

The type 11 element property set defines compasigdl elements that allow variable layer thicknssaed
materials. They have the following properties:

1. Up to 100 layers can be modeled.

2. Variable layer thicknesses. e

3. Constant reference vector. . : - :

4. Variable layer orientation. n: \W\k
5. Variable material properties;sh

Integration is performed with constant stress itistion for each layer.

Same integration rule as shells.

Material number mmust be defined as law type 25 or type 27 (ndbjiot material input cards.

Material given in the shell definition is only uskmt memory allocation, time step computation ameriface
stiffness. It must also be defined as law 25.

wnh e

5.3.14.7 Limitations

When modeling a composite material, there are tnadegies that may be applied. The first, and séstplis to
model the material in a laminate behavior. Thisolags using type 9 property shell elements. Thersgds to
model each ply of the laminate using one integrafioint. This requires either a type 10 or 11 eleime

Modeling using the type 9 element allows global &hébr to be modeled. Input is simple, with only the
reference vector as the extra information. A Tsai-yield criterion and hardening law is easily ob&al from
the manufacturer or a test of the whole material.

Using the type 10 or 11 element, one model's edglinpdetail, with one integration point per plydtensile
failure is described in detail for each ply. Howewbe input requirements are complex, especialhytlie type
11 element.

Delamination is the separation of the various layara composite material. It can occur in situsgiof large
deformation and fatigue. This phenomenon cannahbdeled in detail using shell theory. A global eribn is
available in material law 25. Delamination can effdne material by reducing the bending stiffness luckling
force.

5.3.15 Three-node triangle without rotational d.o.f(SH3N6)

The need of simple and efficient element in no@manalysis of shells undergoing large rotationsvislent in
crash and sheet metal forming simulations. Theteotsnoment plate elements fit this need. One efféimous
concepts in this field is that of Batoz et al. [4@jown under DKT elements where DKT stands for BRite
Kirchhoff Triangle. The DKT12 element [40], [105]é a total of 12 d.o.f's. The discrete Kirchhoffitel
conditions are imposed at three mid-point of eadb.sThe element makes use of rotational d.odaah edge to
take into account the bending effects. A simpliftacee-node element without rotational d.o.f. issented in
[106]. The rotational d.o.f. is computed with thelgh of out-of-plane translational d.o.f. in the gigdior
elements. This attractive approach is used in RAEBOn the development of element SH3N6 which based
DKT12.
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5.3.15.1 Strain computation

Consider two adjacent coplanar elements with a comedge i-j as shown in Figure 5.3.19. Due toajut-
plane displacements of nodesandk, the elements rotate around the side i-j. The eangketween final and

initial positions of the elements are respectively, and &, for corresponding opposite nodes and k.

Assuming, a constant curvature for both of elemethis rotation angle§,, and , related to the bending of
each element around the common side are obtained by

G, - N and 6, s EQ.5.3.15.1
2R 2R

However, for total rotation you have:
6.+6,=a, +a, EQ.5.3.15.2
which leads to:

6, = (ak +am)hk and 6, :M EQ.5.3.15.3

(h +h,) (h +h,)

Figure 5.3.18 -Computation of rotational d.o.f. in SH3N6
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Consider the triangle element in Figure 5.3.19. dbavard normal vectors at the three sides areneéfand
denoted nl1, n2 and n3. The normal component sthaénto the bending around the element side is rudxdai
using plate assumption:

0y

2 2 az

En T+ 0 0 0 Th+he) 0 a
£nt=| 0 &g O 0 0 &g ag EQ.5.3.15.4

v Lo 0w w0 o))

Og

The six mid-side rotationg; are related to the out-of-plane displacementsefsix apex nodes as shown in
Figure 5.3.20 by the following relation:

o, o h, o 00 Offw,
ol |-52 & -0 0 olw,
o) cosp, C‘:zgi h_13 0O 0 O W, EQ.5.3.15.5
wf - = 0 0 ollw, o
s 0 _%524’3 _% 0 % O\
0) [~ 0 -2 0 0 2|lw

where(h, h, h). (@ h @) (, h r)and(s, h, s) are respectively the heights of the
triangles (1,2,3), (1,4,2), (2,5,3) and (3,6,1).

Figure 5.3.19 -Normal vectors definition

n 2
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The non-null components of strain tensor in thal@ement reference are related to the normal coents of
strain by the following relation (see [40] and [16& details):

(3]

(3

(2]

Exx 2 2 2 €
X, = - - X
wi= 2% %A A% £, EQ.5.3.15.6
Il |2 |3
yxy yn3

1

) )

|

Figure 5.3.20 -Neighbor elements for a triangle

5.3.15.2 Boundary conditions application

As the side rotation of the element is computedgishe out-of-plane displacement of the neighbemelnts,
the application of clamped or free boundary condgineeds a particular attention. It is naturatdosider the
boundary conditions on the edges by introducingirtual and symmetric element outside of the edge as

described in Figure 5.3.21. In the case of freatian at the edge, the normal strap is vanished. From
EQ.5.3.15.4, this leads to:

a, =-a, EQ.5.3.15.7
In EQ.5.3.15.5 the fourth row of the matrix is tr@ranged to:

cosp, cosfy 1 J

N h ™ 0 0O EQ.5.3.15.8
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The clamped condition is introduced by the symmadirput-of-plane displacement i.e..wwk. This implies
a, =a,,. The fourth row of the matrix in EQ.5.3.15.5 igthchanged to:

—F  _h _1 0 Q 0J EQ.5.3.15.9
h:l. h2 h3

Figure 5.3.21 -Virtual element definition for boundary conditioapplication

5 4
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5.4 Solid-Shell Elements

Solid-shell elements form a class of finite elem@odels intermediate between thin shell and conweat solid
elements. From geometrical point of view, they apresented by solid meshes with two nodes thrahgh
thickness and generally without rotational degre&eedom. On the other hand, they account for Idt&l
behavior in the thickness direction. They are useiumodeling shell-like portions of a 3D struatuwithout the
need to connect solid element nodes to shell ngdgare 5.4.1).

Figure 5.4.1Solid-shell elements application

The derivation of solid-shell elements is more cboaped than that of standard solid elements stheg are
prone to the following problems:

¢ Shear and membrane locking with the hybrid strammiulation [89], [90], the hybrid stress [91], and
the Assumed and Enhanced Natural Strain formulati®g], [93], [94], and [95].

« Trapezoidal locking caused by deviation of mid-plfrom rectangular shape [8].

» Thickness locking due to Poisson’s ratio couplifighe in-plane and transverse normal stresses [89],
[90], [92], and [94].

Solid shell elements in RADIOSS are the solid eletmevith a treatment of the normal stresses irthfekness
direction. This treatment consists of ensurgapstant normal stresses in the thickness by a penalty adeth
Advantage of this approach with respect to the glsimess treatment is that it can simulate the abrm
deformability and exhibits no discernible lockingoblems. The disadvantage is its possible smalk tatep
since it is computed as solid element and the cheniatic length is determined often using thekhiss.

The solid-shell elements 8ADIOSS are the following:
* HAB8: 8-node linear solid and solid-shell with ortléut reduced integration scheme,

« HSEPH: 8-node linear thick shell with reduced im&tign scheme and physical stabilization of
hourglass modes,

¢ PAG: Linear pentahedral element for thick shells,
e SHELL16: 16-node quadratic thick shell.

The thick shell elements HA8 and HSEPH are respalgtithe solid elements HA8 and HEPH in which the
hypothesis of constant normal stress through tieribss is applied by penalty method. The theaskbteatures
of these elements are explained in section 5.1 tfAibk shell element SHELL16 is described hereby.
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5.4.1 Thick Shell Element SHELL16

The element can be used to model thick-walled &ires situated between 3D solids and thin shellee T
element is presented in Figure 5.4.2. It has 1@sedth three translational d.o.f's per each ndde element is
quadratic in plane and linear through the thickn&@se numerical integration through the thicknessarried out
by Gauss-Lobatto schemes rise up to 9 integratiorenhance the quality of elasto-plastic behavidre in-
plane integration may be done by a reduced 2x2nseher a fully integrated 3x3 points (Figure 5.4.8).
reduced integration method is applied to the nostraks in order to avoid locking problems.

Figure 5.4.2Thick Shell Element SHELL16

The distribution of mass is not homogenous overibges. The internal nodes receive three times marss
than the corner nodes as shown in Figure 5.4.4.

Figure 5.4.3Integration points for SHELL16

[
»

. ®% .l .
.

: 9. . -

m - "
(@) Two to nine integration points (b) In-plane 2x2 and 3x3 integration
through the thickness schemes
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Figure 5.4.4Mass distribution for SHELL16 element

1/32 Mo
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5.5 TRUSS ELEMENTS (TYPE 2)

Truss elements are simple two node linear memibatsonly take axial extension or compression. Edub.1
shows a truss element.

Figure 5.5.1Truss Element

- D
M1 N2

5.5.1 Property input

The only property required by a truss elementésdioss sectional area. This value will changdastement is
deformed. The cross sectional area is compute@usin

Arealt — At
Area(t)= % EQ.55.1.1

whereV is the Poisson's ratio defined in the material law

5.5.2 Stability

Determining the stability of truss elements is veiryple. The characteristic length is defined aslémgth of the
element, i.e. the distance between N1 and N2 nodes.

At s@ EQ.5.5.2.1
C

E
Where, L(t) is the current truss length afd = _|— is the sound speed.
\ o

5.5.3 Rigid body motion

The rigid body motion of a truss element as shawRigure 5.5.2 shows the different velocities ofle® 1 and
2. It is the relative velocity difference betweée two nodes that produces a strain in the elemantely ¢

Figure 5.5.2Truss Motion

N2
V1

V2

N1
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5.5.4 Strain

The strain rate, as shown in Figure 5.5.2, is éefias:

_0v, _ aﬁy Eéx) EQ.5.5.4.1

G ox

5.5.5 Material type

A truss element may only be assigned two types aterial properties. These are types 1 and 2, elasiil
elasto-plastic properties respectively.

5.5.6 Force calculation
The calculation of forces in a truss element i$quared by explicit time integration:
F(t+At)=F(t)+FAt EQ.55.6.1

A generalized force-strain graph can be seen inrEi$.5.3. The force rate under elastic deformatogiven
by:

F, = EAg, EQ.5.5.6.2
where:
E is the Elastic Modulus,

Ais the cross sectional area.

In the plastic region, the force rate is given by:
F, =EAZ, EQ.5.5.6.3

wherekE; is the gradient of the material curve at the deftfon point.

Figure 5.5.3Force-Strain Relationship

(a) without gap (b) with gap
pe s F
F(t+At)
F(t) /
F(t+Ar)
logé T
log—
/ /g?p IO

In a general case, it is possible to introduce @djstance in the truss definition. If gap is natlnthe truss is
activated when the length of the element is equahé initial length minus the gap value. This fesa force-
strain curve shown in Figure 5.5.3(b).
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5.6 BEAM ELEMENTS (TYPE 3)

RADIOSS uses a shear beam theory or Timoshenkaulation for its beam elements.

This formulation assumes that the internal virtwalrk rate is associated with the axial, torsionadl ahear
strains. The other assumptions are:

* No cross section deformation in its plane.
* No cross section warping out of its plane.
With these assumptions, transverse shear is takemccount.

This formulation can degenerate into a standarérEBérnoulli formulation (the cross section remaioesmal to
the beam axis). This choice is under user control.

5.6.1 Local coordinate system

The properties describing a beam element are fiietkin a local coordinate system.

This coordinate system can be seen in Figure S\®dles 1 and 2 of the element are used to defmdéottal X
axis, with the origin at node 1. The local Y axégdefined using node 3, which lies in the local pl#ne, along
with nodes 1 and 2. The Z axis is determined froenvtector cross product of the positive X and Ysaxe

The local Y direction is first defined at time ta@d its position is corrected at each cycle, takg account
the mean rotation of the X axis. The Z axis is afsvarthogonal to the X and Y axes.

Deformations are computed with respect to the looatdinate system displaced and rotated to takesiccount

rigid body motion. Translational velocitiés and angular velocitie€) with respect to the global reference
frame are expressed in the local frame.

Figure 5.6.1Beam Element Local Axis

5.6.2 Beam element geometry
The beam geometry is user-defined by:

A: cross section area,

IX: moment of inertia of cross section about localxis,
ly: moment of inertia of cross section about logakis,

I1z: moment of inertia of cross section about lacakis.
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The moments of inertia about the y and z axes aneerned with bending. They can be calculated uieg
relationships:

l, = J'J Z2dydz EQ.5.6.2.1

|, = H y2dydz EQ.5.6.2.2
A
The moment of inertia about the x axis concernsidor This is simply the summation of the previdws

moments of Ontario:

l=1,+1, EQ.5.6.2.3

5.6.3 Minimum time step

The minimum time step for a beam element is detegthusing the following relation:
_aL

T

At EQ. 5.6.3.1

where:

cis the speed of soundE/ o,
a=05/min(41+b/12) F,vb/3F,,

F, = [L+2d%)-dv2
F,= min[Fl,w/(1+ 2d,” D—dsﬁ

d.=d*ma lJE*\/u 12°E .\ p (- 1shear)
b " 5/6%G

d =maxd,,d;)

A

b_ma%ly,lzi

5.6.4 Beam element behavior
RADIOSS beam elements behave in four individualsvay
¢ Membrane or axial deformation.
» Torsion.
¢ Bending about the z axis.

* Bending about the y axis.

5.6.4.1 Membrane behavior

Membrane or axial behavior is the extension or cesgion of the beam element. The forces actingron a
element are shown in Figure 5.6.2.
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Figure 5.6.2Membrane Forces

X
- P >
1 X 2

The force rate vector for an element is calculaigidg the relation:

Fo|_EA[+1 -1fu,
Sl EQ.5.6.4.1
Fo| | [-1 +1]o,

where:
E is the elastic modulus,

| is the beam element length,
U, is the nodal velocity in x direction.
With the force rate equation, the force vectoratedmined using explicit time integration:

F (t+At)=F,(t)+ FAt EQ.5.6.4.2

5.6.4.2 Torsion

Torsional deformation occurs when the beam is Idadith a moment M about the X axis as shown in Fégu
5.6.3.

Figure 5.6.3Torsional Loading

1 2
M, M,
<<= )X -

The moment rate vector is computed by:

[M“}:%[ﬂ - }Fﬂ} EQ. 5.6.4.3
M, | |[-1 +1]6,
where:

G is the modulus of rigidity,

9X is the angular rotation rate.

The moment about the X axis is found by expliciteiintegration:

M, (t+At)=M,(t)+M At EQ.5.6.4.4

5.6.4.3 Bending about z axis

Bending about the z axis involves a force in thdirgction and a moment about the z axis as showkigare
5.6.4.
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Figure 5.6.4Bending about the z axis

Two vector fields must be solved for forces and rants. The rate equations are:

s
F.|_ ElI, [+12 6 -12 +61] 6, £0.56.45
F, |311+goy) -12 -6l +12 -6l v, T
922
Vy
le El, +6l (4+§0y)|2 — 6l (2_(0)/)'2 6,
. == ) ) EQ.5.6.4.6
M, | Plirg) +6 2-g)> -6 ([a+g)?|v,
922
1441+ )l
where@, = —————**%
I IE
v is the Poisson's Ratio.
The factordJy takes into account transverse shear.
The time integration for both is:
F,(t+at)=F,(t)+ F At EQ.5.6.4.7
M, (t+At)=M,(t)+M At EQ.5.6.4.8

5.6.4.4 Bending about Y axis

Bending about the Y axis is identical to bendinguithe Z axis. A force in the Y direction and amemt about
the Z axis, shown in Figure 5.6.5, contribute t® ¢femental bending.

Figure 5.6.5Bending about Y axis
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The rate equations are:

I/zl
Fa El, [+126 -12+6l7 6,
R Y EQ.5.6.4.9
F,, I"A+d,)| -12-61+12-6l || V,,
6,,
I/zl
My|_ El, [+6(4+®,)*-6l(2-0,)%] O, £0.5.6.4.10
My, | 1°@+®,)|+6l(2-d,)12-6l (4+D )% |V, T
6,,
where:
_1441+v)l,
*"  BA?
Like bending about the Z axis, the fac@rZ introduces transverse shear.
With the time integration, the expression is:
F,(t+At)=F,(t)+F,At EQ.5.6.4.11
M, (t+At)=M,(t)+ M At EQ. 5.6.4.12

5.6.5 Material properties

A beam element may have two different types of nitproperty:
e Elastic

» Elasto-plastic

5.6.5.1 Elastic Behavior

The elastic beam is defined using material law fctvis a simple linear material law.

The cross-section of a beam is defined by its Araad three moments of inertig, Iyandl .

An elastic beam can be defined with these fourmatars. For accuracy and stability, the followimgitations
should be respected:

L>JA EQ.5.6.5.1
001A* <1, <100A° EQ.5.6.5.2
001A* < |, <100A% EQ.5.6.5.3

oa(l, +1,)<1, <100, +1,)

EQ. 5.6.5.4
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5.6.5.2 Elasto-plastic Behavior

A global plasticity model is used.

The main assumption is that the beam cross seidifuil and rectangular. Optimal relations betweations
and section inertia are:

1211, = A EQ. 5.6.5.5

I, =1, +1, EQ. 5.6.5.6

However, this model also gives good results fordineular or ellipsoidal cross-section. For tubutarH cross-
sections, plasticity will be approximated.

Recommendations:
L>JA EQ.5.6.5.7
01A* <12l |, <10A* EQ. 5.6.5.8
001<1,/1,<100 EQ.5.6.5.9
051, +1,)<1,<2(1,+1,) EQ. 5.6.5.10

5.6.5.3 Global Beam Plasticity

The elasto-plastic beam element is defined usintgmadlaw 2:

&
g,= (A+ B£;{1+C In fj EQ.5.6.5.11
50
The increment of plastic strain is:
AW, .
Ag, =—P= EQ.5.6.5.12
g

y

The equivalent strain rate is derived from thelteteergy rate:

._ AW,
£= total EQ.5.6.5.13
Jqut
Yield stress:
F2 3(M2 M M?
o, = _x2+_ X 4 +z EQ.5.6.5.14
AOAL, 1, 0y,
If Oy >0,,0ne performs a radial return on the yield surface
g
Fxpa = |:X_y EQ. 5.6.5.15
Oeq
and fori=x, y, z:
pa UY
M™ =M, — EQ.5.6.5.16
O
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5.6.6 Inertia Computation

The computational method of inertia for some kinfi€lements as beam is particular as the inert&atbee
transferred to the extremities of the beam. Theahotertias are computed in function of the matediensity

P, the cross-section ar&the element length and the moments of inertif,, | W l,:

) o L B € T BT
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5.7 ONE DEGREE OF FREEDOM SPRING ELEMENTS
(TYPE 4)

One degree of freedom (DOF) spring elements armelbfas a type 4 property set. Three variationshef
element are possible:

e Spring only
e Dashpot (damper) only
* Spring and dashpot in parallel

These three configurations are shown in Figured 5075.7.3.

Figure 5.7.1Spring Only

No material data card is required for spring eletsieHowever, the stiffnedsand equivalent viscous damping
coefficientc are required. The massis required if there is any spring translation.

There are three other options defining the typspoing stiffness with the hardening flag:
e Linear Stiffness
* Nonlinear Stiffness

* Nonlinear Elasto-Plastic Stiffness
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Likewise, the damping can be either:
e Linear
* Nonlinear
A spring may also have zero length. However, a@@& spring must have 2 nodes.

The forces applied on the nodes of a one DOF smaiagalways colinear with direction through bothdes;
refer to figure 5.7.4.

Figure 5.7.4Colinear Forces

5.7.1 Time step
The time of a spring element depends on the valfiesffness, damping and mass.

For a spring only element:

m
At=_ |— EQ.5.7.1.1

Kk

For a dashpot only element:

At -Mm EQ.5.7.1.2
2C

For a parallel spring and dashpot element:

2 —
a2 lmkeet)-c c 5715

Kk

The critical time step ensures that the stabilitythe explicit time integration is maintained, btutdoes not
ensure high accuracy of spring vibration behav@imly two time steps are required during one vilorageriod
of a free spring to keep stability. However, ifdrainusoidal reproduction is desired, the time stequld be
reduced by a factor of at least 5.

If the spring is used to connect the two parts,gbeng vibration period increases and the defspiing time
step ensures stability and accuracy.

5.7.2 Linear spring
Function number defining f(5)
N1=0
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The general linear spring is defined by constansanatiffness and damping. These are all requinethe
property type definition. The relationship betwderte and spring displacement is given by:

dl
F=k({l -1 — .5.7.2.
( °)+Cdt EQ.5.7.2.1

Figure 5.7.5Linear Force-Displacement Curve

F

The stability condition is given by equation 5.3.1.

At:(\/c“km!—c

EQ.5.7.2.2
K Q

5.7.3 Nonlinear elastic spring
Hardening flag
H=0

The hardening flag must be set to 0 for a nonlirdastic spring. The only difference between linaad
nonlinear elastic spring elements is the stiffndsfinition. The mass and damping are defined astaon
However, a function must be defined that relates ftirce,F, to the displacement of the sprindsld). It is
defined as:

dl
F=1f(l-I — .5.7.3.
( 0)+Cdt EQ.5.7.3.1
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Figure 5.7.6Nonlinear Elastic Force-Displacement Curve

AF

The stability criterion is the same as for the dinespring, but rather than being constant, thdnsik is
displacement dependent:

2 + ] _
= N im)-c o 5732
k
where:

k' = ma{a(%o) f(l —IO)} EQ.5.7.3.3

5.7.4 Nonlinear elasto-plastic spring - Isotropic ardening
H=1

The hardening flag must be set to 1 in this caskféd, ) is defined by a function. Hardening is isotrofic
compression behavior is identical to tensile bedravi

d
F=f(-1,)+C— .5.7.4.
(1-1,)+ " EQ.5.7.4.1

Figure 5.7.7Isotropic Hardening Force-Displacement Curve

AF

/ Ku

Yo
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5.7.5 Nonlinear elasto-plastic spring - Decoupledandening
H=2

The hardening flag is set to 2 in this case andlf|lis defined by a function. The hardening is dgxted for
compression and tensile behavior:

dl
F=f( _|O)+Ca EQ.5.7.5.1

Figure 5.7.8Decoupled Hardening Force-Displacement Curve

5.7.6 Nonlinear elastic-plastic spring - Kinematidhardening
H=4

The hardening flag is set to 4 in this case afld f) and §(I-I . ) (respectively maximum and minimum yield
force) are defined by a function. The hardeningirgematic if maximum and minimum yield curves are
identical:

d
F=f(-1,)+C— .5.7.6.
(1-1,)+ " EQ.5.7.6.1

Figure 5.7.9Kinematic Hardening Force-Displacement Curve
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5.7.7 Nonlinear elasto-plastic spring - Nonlinear nloading
H=5

The hardening flag is set to 5 in this case adgdfd f26may (respectively maximum yield force and residual
deformation) are defined by a function. Uncoupladdening in compression and tensile behavior withlinear
unloading:

d
F=f(-1,)+C— .5.7.7.
(1-1,)+ " EQ.5.7.7.1

With 6= I-l, .

Figure 5.7.10Nonlinear unloading Force-Displacement Curve

F=1f(8) + C d&/dt At = JCHKM-C

Sdmax

dresid

F = a (8-0resid)"
dresid = f2(dmax)
a,n computed using K and F(dmax)

5.7.8 Nonlinear dashpot
The input properties for a nonlinear dashpot arg gkse to that of a spring. The required values a
e Mass,M.

< A function defining the change in force with respiecthe spring displacement. This must be equal
to unity:

fl-1,)=1
¢ A function defining the change in force with spridigplacement rate,

g(dl/dt)

e The hardening flag in the input must be set to zero

The relationship between force and spring displasgrand displacement rate is:

F=f( _|0)g(%j = g(%j EQ.5.7.8.1

A nonlinear dashpot property is shown in Figure BL7
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Figure 5.7.11Nonlinear Dashpot Force Curve

F

dj/dt
The stability condition for a nonlinear dashpogjiigen by:
M
A= — EQ.5.7.8.2
C
where:
C'=ma Lg(dl /dt) EQ.5.7.8.3
o(dl /dt)
5.7.9 Nonlinear viscoelastic spring
The input properties for a nonlinear viscoelastiiregy are:
¢ Mass,M
e Equivalent viscous damping coefficiebt
» A function defining the change in force with spridigplacement
F(-1o)
» A function defining the change in force with spridigplacement rate
g(dl /dt)
The hardening flag in the input must be set to egei®. The force relationship is given by:
d
F=f( _Io)g(aJ EQ.5.7.9.1

Graphs of this relationship for various valuesg(fdl /dt) are shown in Figure 5.7.12.
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Figure 5.7.12Visco-Elastic Spring Force-Displacement Curves

o(dd/dt) =2.
F o(dd/dt) =1.5
g(dd/dt) =1.

do/dt

The stability condition is given by:

At = (\/C'2 +L<"M )—C’

where:

01-Jan-2017
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5.8 GENERAL SPRING ELEMENTS (TYPE 8)

General spring elements are defined as type 8 elfepneperty. They are mathematical elements, while 6
DOF, three translational displacements and thréatiomal degrees of freedom. Each DOF is completely
independent from the others. Spring displacemesi€s to either spring extension or compression. Silitness

is associated to each DOF. Directions can eithegldtgal or local. Local directions are defined wéthixed or
moving skew frame. Global force equilibrium is rested, but without global moment equilibrium. THere,

this type of spring is connected to the laboratbat applies the missing moments, unless the tfioidg nodes
are not coincident.

5.8.1 Time step

The time step calculation for general spring eleismés the same as the calculation of the equivalgre 4
spring (Section 5.7.1).

5.8.2 Linear spring

See section 5.7.2; the explanation is the samerapfing type 4.

5.8.3 Nonlinear elastic spring

See section 5.7.3; the explanation is the samerapfing type 4.

5.8.4 Nonlinear elasto-plastic spring - Isotropic ardening

See section 5.7.4; the explanation is the samerapfing type 4.

5.8.5 Nonlinear elasto-plastic spring - Decoupledandening

See section 5.7.5; the explanation is the samerapfing type 4.

5.8.6 Nonlinear elasto-plastic spring - Kinematic ardening

See section 5.7.6; the explanation is the samerapfing type 4.

5.8.7 Nonlinear elasto-plastic spring - Nonlinear nioading

See section 5.7.7; the explanation is the samerapfing type 4.

5.8.8 Nonlinear dashpot

See section 5.7.8; the explanation is the samerapfing type 4.

5.8.9 Nonlinear viscoelastic spring

See section 5.7.9; the explanation is the samerapfing type 4.

5.8.10 Skew frame properties

To help understand the use of skew frames, thermiefton in the local x direction of the spring wile
considered. If the skew frame is fixed, deformaiiothe local X direction is shown in Figure 5.8.1:
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Figure 5.8.1Fixed Skew Frame

The same local x direction deformation, with a nmgvékew frame, can be seen in Figure 5.8.2.

Figure 5.8.2Moving Skew Frame

In both cases, the forces are in equilibrium, bettnoments are not. If the first two nodes defirtimg moving
skew system are the same nodes as the two spenmgpt nodes, the behavior becomes exactly the aarnimat
of a type 4 spring element. In this case the moomargquilibrium is respected and local Y and Z deiations
are always equal to zero.

Fixed Nodes

If one of the two nodes is completely fixed, thememtum equilibrium problem disappears. For examiple,
node 1 is fixed, the force computation at node Bdsdependent on the location of node 1. The gpttien
becomes a spring between node 1 and the labora®shown in Figure 5.8.3.

Figure 5.8.3Fixed node - Fixed skew frame

Ys

Eixed skew frame |
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It is generally recommended that a general sprieghent (type 8) be used only if one node is fixadall
directions or if the two nodes are coincidenthi two nodes are coincident, the translationdinstdfs’ have to
be large enough to ensure that the nodes remaircagident during the simulation.

5.8.11 Deformation sign convention

Positive and negative spring deformations are efihdd with the variation of initial length. Theitial length
can be equal to zero for all or a given directibherefore, it is not possible to define the defdrarasign with
length variation.

The sign convention used is the following. A defation is positive if displacement (or rotation) rdde 2
minus the displacement of node 1 is positive. Tdmaessign convention is used for all 6 degreeseafdom.

U =U, ~Uy EQ.5.8.11.1

6=6,-6, EQ.5.8.11.2

5.8.12 Translational forces

The translational forces that can be applied t@eral spring element can be seen in Figure 5Fdeach
DOF (i = x, Y, z), the force is calculated by:

F = fi(ui)+c:iui EQ.5.8.12.1
where:
C is the equivalent viscous damping coefficient
fi (ui) is a force function related to spring displacement

The value of the displacement function dependdeniytpe of general spring being modeled.

Figure 5.8.4Translational Forces

y
Fi%(ed or vin
reference fram

5.8.12.1 Linear Spring

If a linear general spring is being modeled, thastation forces are given by:

F =Ku +Cu EQ.5.8.12.2

whereK is the stiffness or unloading stiffness (for etaglastic spring)

5.8.12.2 Nonlinear Spring

If a nonlinear general spring is being modeled ttaeslation forces are given by:
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U

F = fi(ui)(A+ Bln( -

j+ Q(Ui )JJFCM EQ.5.8.12.3

where:

f (ui ) is a function defining the change in force withisg displacement

g(ui ) is a function defining the change in force withisg displacement rate

A = coefficient. Default = 1.
B = coefficient

D = coefficient. Default = 1.

5.8.13 Moments

Moments can be applied to a general spring elenasnshown in Figure 5.8.5. For each DOF (i = xz)ythe
moment is calculated by:

M, =f(g)+Cq EQ.5.8.13.1
where:
C is the equivalent viscous damping coefficient

fi (HI) is a force function related to spring rotation

The value of the rotation function depends on thpetof general spring being modeled. Not all fumtsi and
coefficients defining moments and rotations areth® same value as that used in the translationak fo
calculation.

Figure 5.8.5General Spring Moments

Mz

>

-Mz

5.8.13.1 Linear Spring

If a linear general spring is being modeled, thermants are given by:

M, =K.8+C8 EQ.5.8.13.2

whereK is the stiffness or unloading stiffness (for etaglastic spring).
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5.8.13.2 Nonlinear Spring

If a nonlinear general spring is being modeled ntwenents are given by:

M, = f (Q)[A+B|n(g}+g(9i)]+q9i

where:

f (9| ) is a function defining the change in force withisg displacement

g(HI ) is a function defining the change in force withisg displacement rate

A = coefficient. Default = 1.
B = coefficient.

D = coefficient. Default = 1.

5.8.14 Multidirectional failure criteria
Flag for rupture criteria: Ifail
Ifail=1
The rupture criteria flag is set to 1 in this case:
F?=D;+D;+D+D. +D. +D’
Where:

D, =D,, isthe rupture displacement in positive x direetf u, >0

D, =D,, is the rupture displacement in negative x digectf u, >0
Graphs of this rupture criterion can be seen infed.8.6.
Figure 5.8.6Multi-directional failure criteria curves

A

el
N

Dyp

v

Dyn
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5.9 PULLEY TYPE SPRING ELEMENTS (TYPE12)

Pulley type springs are defined by type 12 elenmoperty. A general representation can be seerigaré
5.9.1. It is defined with three nodes, where nods Bcated at the pulley position. Other propertseich as
stiffness, damping, nonlinear and plastic effecésthe same as for the other spring types, andefieed using
the same format.

A deformable "rope" joins the three nodes, with thass distribution as follows: one quarter at nagdene
guarter at node 3 and one half at node 2.

Coulomb friction can be applied at node 2, whichyraéso take into account the angle between therbpe
strands.

The two rope strands have to be long enough tadavode 1 or node 3 sliding up to node 2 (the pullEythis
occurs, either node 1 or 3 will be stopped at ihdast as if there were a knot at the end of dper

Figure 5.9.1Pulley Type Spring Element Representation

F2

FisFz+F3=0
IF11 = IF21 < (IF11 + IF21) tanh(fy/2)

1 : Coulomb friction factor

VZEM+GC2 - C
2K

dt=

Fa

5.9.1 Time step

The time step is calculated using the relation:

J2KM +C?)-C

=
2K

This is the same as for type 4 spring elementsgpxthat the stiffness is replaced with twice ttifngess to
ensure stability with high friction coefficients.

EQ.5.9.1.1

5.9.2 Linear spring

See section 5.7.2; the explanation is the samerapfing type 4.

5.9.3 Nonlinear elastic spring

See section 5.7.3; the explanation is the samerapfing type 4.

5.9.4 Nonlinear elasto-plastic spring - Isotropic ardening

See section 5.7.4; the explanation is the samerapfing type 4.
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5.9.5 Nonlinear elasto-plastic spring - Decoupledandening

See section 5.7.5; the explanation is the samerapfing type 4.

5.9.6 Nonlinear dashpot

See section 5.7.8; the explanation is the samerapfing type 4.

5.9.7 Nonlinear visco-elastic spring

See section 5.7.9; the explanation is the samerapfing type 4.

5.9.8 Friction effects

Pulley type springs can be modeled with or with@atlomb friction effects.

— —

F F

5.9.8.1 Without Friction

Without friction, the forces are computed using:

do
IR =[F|= Ko+C-r EQ.5.9.8.1
where:
§ is the total rope elongation == with | =1, +1,,

K is the rope stiffness

C is the rope equivalent viscous damping

5.9.8.2 With Coulomb Friction

If Coulomb friction is used, forces are correctathg:

do, , do,
=K(g,+3,)+C| —*L+—2 EQ.5.9.8.2
(6+4,)+C ( e j Q
AF = ma){K(é'l+5) C(ddf do, j F tan){ﬁ'uD EQ.5.9.8.3
|F)|=F +AF EQ.5.9.8.4
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IF|=F -AF
F,=-F -F,
where:

31 is the elongation of strand 1-2

82 is the elongation of strand 2-3

01-Jan-2017
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5.10 BEAM TYPE SPRING ELEMENTS (TYPE13)

Beam type spring elements are defined as propgpty/ 13 elements. This type of spring element fondtias if
it were a beam element. The six independent moidesformation are:

» Traction / compression
» Torsion

¢ Bending (two modes)
e Shear (two modes)

Beam type springs only function if their lengthnist zero. A physical representation of a beam ggéng can
be seen in Figure 5.10.1.

Figure 5.10.1Representation of Beam Type Spring

Kshear y /E‘
T F T

| ¥local \
2local | /f E ys]}:aw

Ktension—

Kshear z-~

5.10.1 Time step

5.10.1.1 Translational stiffness time step
_Jmass max(Kt) +C? - C,

trandational _stifness — maX(Kt)

Where, max(Kt) is the maximum translational stiffae
Ctis the translational damping

At

5.10.1.2 Rotational stiffness time step
_inertiaK; +C? -C/,

rotational _ stifness — K

At

r
Kr' is the equivalent rotational stiffnes(, = max(K,).L* + max(K,)

Where, max(Kt) is the maximum translational stiffae
max(Kr) is the maximum rotational stiffness

Cr'is the equivalent rotational dampin€, = max(C,).L* + max(C,)

Where,
max(Ct) is the maximum translational damping
max(Cr) is the maximum rotational damping
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5.10.2 Linear spring

The properties required to define the spring chtarestics are stiffnesk and dampingC. Nonlinear and elasto-
plastic properties can also be applied, for allrdeg of freedom. The properties are of the sanma &w simple
type 4 spring elements (section 5.7).

See section 5.7.2; the explanation is the samerapfing type 4.

5.10.3 Nonlinear elastic spring

See section 5.7.3; the explanation is the samerapfing type 4.

5.10.4 Nonlinear elasto-plastic spring - Isotropitiardening

See section 5.7.4; the explanation is the samerapfing type 4.

5.10.5 Nonlinear elasto-plastic spring - Decouplduardening

See section 5.7.5; the explanation is the samerapfing type 4.

5.10.6 Nonlinear elasto-plastic spring - Kinematibardening

See section 5.7.6; the explanation is the samerapfing type 4.

5.10.7 Nonlinear elasto-plastic spring - Nonlineannloading

See section 5.7.7; the explanation is the samerapfing type 4.

5.10.8 Nonlinear dashpot

See section 5.7.8; the explanation is the samerapfing type 4.

5.10.9 Nonlinear visco-elastic spring

See section 5.7.9; the explanation is the samerapfing type 4.

5.10.10 Skew frame properties

Beam type spring elements are best defined usieg thodes (Figure 5.10.2). Nodes 1 and 2 are theshals of
the element and define the local X axis. Node @wadlthe local Y and Z axes to be defined. Howetlhgs, node
does not need to be supplied.

If all three nodes are defined, the local referdrame is calculated by:

X=nn, EQ. 5.10.10.1
Z=Xxnn, EQ. 5.10.10.2
y=7xX EQ.5.10.10.3

If node 3 is not defined, the local skew frame tet be specified for the element is used to defieeZ axis.
The X and Y axes are defined in the same mannieefase.

7= XX Vg EQ. 5.10.10.4
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If no skew frame and no third node are defined,glebal Y axis is used to replace the Y skew alfithe Y
skew axis is collinear with the local X axis, tloedl Y and Z axes are placed in a totally arbityaogition. The
local Y axis is defined at time zero, and is caedat each cycle, taking into account the meaniX ratation.

Figure 5.10.2Element Definition

o3

5.10.11 Sign Conventions
The sign convention used for defining positive ispments and forces can be seen in Figure 5.10.3.

Figure 5.10.3Sign Conventions

+
+ +
X /VI_FA_b X
+
TENSION (X) TORSION
Y _‘ n 7
L X t/ ~
X
+ \A + + ‘)»
A
SHEAR (XY) FLEXION (Y)
Z -‘ i Y
+ + +
« A .
+ \_)’ X
&
SHEAR (XZ) FLEXION (2)

5.10.12 Tension

The tension component of the beam type spring elemseindependent of other forces. It is shown iguFe
5.10.4. The tension at each node is computed by:

Fo=f(u)+Cu, EQ.5.10.12.1

Fo=—Fa EQ.5.10.12.2

01-Jan-2017 103



RADIOSS THEORY Version 2017 ELEMENT LIBRARY

where

u, =u, —Uu, isthe relative displacement of nodes 1 and 2.

fX (ux) is the function defining the force-displacemetionship.

It can be linear or nonlinear (see sections 5021.5.).

Figure 5.10.4Spring Tension

+ +
e oPp—pp X
1 2
TENSION (X)

5.10.13 Shear - XY

Shear in the Y direction along the face perpendictd the X axis is a combination of forces and rants. This
can be seen in Figure 5.10.5.

Figure 5.10.5XY Shear Forces and Moments

Y 2 N
/-. FL X
+ ‘j/
1 SHEAR (XY)

There are two mechanisms that can cause sheafir3tis the beam double bending as shown in Figui@.5.
The second is shear generated by node displaceagestiown in Figure 5.10.6, where node 2 is displac

Figure 5.10.6Shear due to Node Displacement
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The forces and moments are calculated by:

Fo= fy(uy)+cyuy EQ. 5.10.13.1
Fro=-Fy EQ.5.10.13.2
M, =-IF, EQ.5.10.13.3
M,=M, EQ.5.10.13.4
where:
ezZ + ezl
U, =U, —Uy, _I(—Z

fy(uy) is the function defining the force-displacemerationship.

5.10.14 Shear - XZ

The XZ shear is orthogonal to the XY shear desdribethe previous section. The forces and momeaising
the shear can be seen in Figure 5.10.7.

Figure 5.10.7XZ Shear Forces and Moments

z 2 N
/‘ ++> X
n
+ .'/
1 SHEAR (X2)

The forces and moments are calculated by:

F, = f,(u)+Cu, EQ.5.10.14.1

Fo.=-F, EQ. 5.10.14.2

My, =IF, EQ.5.10.14.3

My, =M, EQ. 5.10.14.4
Where,

6

y2

+6
— yl
uz_uzz_uzl+|( 2 ]

fz(uz) is the function defining the force-displacemeitatienship.
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5.10.15 Torsion

Torsional forces, shown in Figure 5.10.8, are dated using the relations:

M, = . (6,)+C.8, EQ. 5.10.15.1
M,, =-My, EQ. 5.10.15.2
where:

6,=6,,—0, isthe relative rotation of node 1 and 2.

fo (HX) is the function defining the force-displacemenatienship.

Figure 5.10.8Beam Type Spring Torsion

e

1 2

TORSION

5.10.16 Bending about the Y Axis

Bending about the Y axis can be seen in Figure.8.Ithe equations relating to the moments beinglyred
are calculated by:

M, =f,(6)+C, EQ.5.10.16.1
M v2 = -M v EQ.5.10.16.2
where:
6,=0,-06, isthe relative rotation of node 1 and 2.
fw(ﬁy) is the function defining the force-displacemeiationship.

Figure 5.10.9Bending about Y axis
Z

X
\L+ +& 5

1

FLEXION (Y)

5.10.17 Bending about the Z Axis

The equations relating to the moment generated bieaan type spring element and the beam's displademe
(Figure 5.10.10) is given by:

M, =f,(8,)+C,8, EQ.5.10.17.1

M,,=-M, EQ.5.10.17.2
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where 8, =68,, -8, is the relative rotation of node 1 and 2.
fZZ(HZ) is the function defining the force-displacemesiationship.

Figure 5.10.10Bending about Z axis

L

1v2

FLEXION (2)

5.10.18 Multidirectional failure criteria
See Section 5.8.14; the explanation is the sarfar apring type 8.
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5.11 MULTISTRAND ELEMENTS (TYPE 28)

5.11.1 Introducing Multistrand Elements

Multistrand elements are n-node springs where mist@ssumed to slide through the nodes. It coaldded for
belt modelization by taking nodes upon the dumnmictien may be defined at all or some nodes. Whedes
are taken upon a dummy in order to modelize a thedt,allows friction to be modelized between tledt land the
dummy.

5.11.2 Internal Forces Computation

Nodes are numbered from 1 to n, and strands ardenad from 1 to n-1 (strand k goes from nodetdNnode
Ni+1).

5.11.2.1 Averaged force into multistrand element

The averaged force in the multistrand is computed a

. . _K C ;
Linear springF _F5+F5

C

Non linear springF = f(e)[g(é)+ﬁ5

C .
or F=f(g)+=3J if gfunction identifier is 0
L

a, C o
or F= g(£)+—05 if f function identifier is 0
L

L-L°

where, £ is engineering straing = 0

L is the reference length of element.

5.11.2.2 Force into each strand

The force into each strand k is computed as:

F=F+AFR
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AR is computed an incremental way:

AFk(t):AFk(t—1)+|505£k —%Jg EQ.5.11.2.1
k

with |, the length of the unconstrained strand, = E(t)— £(t —1) and 0g, = A&u, [(VkJrl —Vk),

where U, is the unitary vector from nodextb node N1 .

Assuming:
oL EQ.5.11.2.2
0= 10 .5.11.2.
wherel, is the actual length of strakd
Therefore, EQ. 5.11.2.1 reduces to:
K L
AF, (t) = AR (t —1)+|—0 &% EQ.5.11.2.3
k

5.11.2.3 Friction

Friction is expressed at the nodesllfis the friction coefficient at nodk, the pulley friction at node Nis
expressed as:

AF, —AF|< (2F +AF, +AFk)tan){’8—éuj EQ.5.11.2.4

When equation 5.11.2.4 is not satisfieF, _, —AF,| is reset to(ZF +AF_ + AFk)tam{’B—zﬂj :

All the AF, (k=1,n-1) are modified in order to satisfy all cétions uponAF,_, —AF, (k=2,n-1), plus the
following condition on the force integral along thmiltistrand element:

I (F+AF)=LF EQ.5.11.2.5

k=1n-1
This process could fail to satisfy equation 5.14 &fter theAF, (K =1,n—1) modification, since no iteration
is made. However, in such a case one would expedtittion condition to be satisfied after a fame steps.

Note: Friction expressed upon strands (giving a frictmoefficient u along strand k) is related to pulley
friction by adding a friction coefficientl/2 upon each nodescdnd N1 .

5.11.2.4 Time step

Stability of a multistrand element is expressed as:

JCE+d K, -C
At < YK ’?(k S S EQ.5.11.2.6
k
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_ Massof the multistrand

with K, = 0 and (assuming 9.2.2.2) :
Ky :ma{io,ioj=ma K—Ij) FL OJ EQ.5.11.2.7
e Bl I L Ile—L)
GG N
C = =| fle)—=(£)+C |— EQ.5.11.2.8
e 10Re)c Q
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5.12 SPRING TYPE PRETENSIONER (TYPE 32)

5.12.1 Introducing pretensioners

Pretensioner expected behavior is as follows: leepoetensioning, a piston is fixed in its initiagition; when
activated, the piston is pushed and cannot slide dine piston has reached the end of its slide, unhable to
slide further in any direction in the opposite diien from its actual position.

5.12.2 RADIOSS model for pretensioners
5.12.2.1 Linear model

slope STIF0 A Force

F1

slope STIFO

7,

Elongation

A
y

| DI

STIFO is the spring stiffness before sensor adtimatAt sensor activation, the 2 input coefficieataong D1,
STIF1, F1 and E1 determine the pretensioner cheniatits. Let us recall the following relations ween the 4
coefficients:

D, K F
= K== EQ.5.12.2.1
=K D, N

STIFO is also used as unloading stiffness befaeeetid of the piston's slide, and as both loadinfuanroading
stiffness at the end of the piston's slide. STIR@u&d be large enough to allow locking.

5.12.2.2 Nonlinear model

slope STIF, A Force

Pretensioning force

z
o |

slope STIF,

> .
Elongation
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STIFO is spring stiffness before sensor activatid@pending on the input, pretensioning force isrdef as f(L-
Lo), with either g(t4), or f(L-Lo).g(t-to), with Lo length of the spring at sensor activation time ah@ sensor
activation time.

Similar use of STlFallows piston locking.

5.12.2.3 Force computation

Let the pretensioning forcé, (t) =F +STIF [ﬂL(t)— I—o) for a linear model,
and Fp(t) =f (L(t)— LO) or g(t —to) or f (L(t)— LO)[g(t —to) for a nonlinear model.

The force into the pretensioner spring is compated EQ.5.12.2.2
if, F,(t+dt)=0

F (t+dt) = Max(F, (t + dt), F (t) + STIF, (Lt + dit) - L(t))
and F (t + dt) = F(t)+ STIF, [(L(t + dt)— L(t)) otherwise.
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