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3.0 FINITE ELEMENT FORMULATION  

3.1 Finite Element Approximation 

In the finite element method, the motion x(X,t) is approximated by: 

( ) ( ) ( )txXtXx iIIi Φ=,       EQ. 3.1.0.1 

where ( )XIΦ  are the interpolating shape functions and iIx  is the position vector of node I.  Summation over 

repeated indices is implied. In the case of lower indices, summation is over the number of space dimensions. For 
upper case indices, summation is over the number of nodes. The nodes in the sum depend on the type of entity 
considered. When the volume is considered, the summation is over all the nodes in the domain. When an element 
is considered, the sum is over the nodes of the element. 

Similarly, nodal displacements are defined using EQ. 2.1.0.2 at nodes: 

( ) ( ) iIiIiI XtxtXu −=,       EQ. 3.1.0.2 

The displacement field is: 

( ) ( ) ( )tuXtXu iIIi Φ=,       EQ. 3.1.0.3 

The velocities are obtained by taking the material time derivative of the displacement giving: 

( ) ( ) ( ) ( )tvX
t

tXu
tXv iII

i
i Φ=

∂
∂= ,

,      EQ. 3.1.0.4 

It is worth pointing out that the velocity is a material time derivative of displacements, i.e. the partial derivative 
with respect to time with the material coordinate fixed. 

Finally, accelerations are similarly given by the material time derivative of velocities: 

( ) ( ) ( )tvXtXv iIIi ɺɺ Φ=,       EQ. 3.1.0.5 

Emphasis is placed on the fact that shapes functions are functions of the material coordinates whatever the 
updated or the total Lagrangian formulation is used. All the dependency in the finite element approximation of 
the motion is taken into account in the values of the nodal variables. 

From EQ. 2.4.1.5, the velocity gradient is given by: 

jIiI
j

I
iI

j

i
ij v

x
v

x

v
L ,Φ=

∂
Φ∂=

∂
∂=      EQ. 3.1.0.6 

and the rate of deformation (EQ. 2.4.1.1) by: 

( ) ( )iIjIjIiIjiijij vvLLD ,,2

1

2

1 Φ+Φ=+=     EQ. 3.1.0.7 

Similarly, the test functions are approximated as: 

( ) ( ) iIIi vXXv δδ Φ=       EQ. 3.1.0.8 

where iIvδ  are the virtual nodal velocities. 

The test functions are next substituted into the principle of virtual power (EQ. 2.10.0.5) giving:  

0I
iI ji iI I i iI I i iI I i

j

v d v b d v d v v d
x

σ

δ σ δ ρ δ τ δ ρ
Ω Ω Γ Ω

∂Φ Ω − Φ Ω − Φ Γ + Φ Ω =
∂∫ ∫ ∫ ∫ ɺ  EQ. 3.1.0.9 
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The virtual velocities must be kinematically admissible, i.e. satisfy boundary conditions on uΓ , the part of the 

boundary where kinematical conditions are specified. Using the arbitrariness of the virtual nodal velocities 

everywhere except on uΓ , the weak form of the momentum equation is: 

0I
ji I i I i I i

j

d b d d v d
x

σ

σ ρ τ ρ
Ω Ω Γ Ω

∂Φ Ω − Φ Ω − Φ Γ + Φ Ω =
∂∫ ∫ ∫ ∫ ɺ    EQ. 3.1.0.10 

with σΓ  the part of the boundary where traction loads are imposed. 

3.2 Internal and External Nodal Forces 

As in Section 2.11, we define the nodal forces corresponding to each term in the virtual power equation. 

The internal nodal forces are defined by: 

∫ ∫
Ω Ω

Ω
∂
Φ∂=Ω

∂
∂== d

x
vd

x

v
fvP ji

j

I
iIji

j

i
iIiI σδσδδδ intint    EQ. 3.2.0.1 

The stress is the true (Cauchy) stress. 

∫
Ω

Ω














∂
Φ∂= d
x

f
j

I
jiiI σint

      EQ. 3.2.0.2 

These nodal forces are called internal because they represent the stresses in the body. The expression applies to 
both the complete mesh or to any element. It is pointed out that derivatives are taken with respect to spatial 
coordinates and that integration is taken over the current deformed configuration. 

The external forces are similarly defined in terms of the virtual external power: 

ext ext
iI iI il I i il I iP v f v b d v d

σ

δ δ δ ρ δ τ
Ω Γ

= = Φ Ω + Φ Γ∫ ∫    EQ. 3.2.0.3 

so that external forces are given by: 

ext
iI I i I if b d d

σ

ρ τ
Ω Γ

= Φ Ω + Φ Γ∫ ∫      EQ. 3.2.0.4 

3.3 Mass Matrix and Inertial Forces 

The inertial body forces are defined by: 

∫∫
ΩΩ

ΓΦ=ΩΦ== dvvdvvfvP iIiIiIiI
inert

iIiI
inert

ɺɺ ρδρδδδ    EQ. 3.3.0.1 

so that the inertia forces are given by: 

∫
Ω

ΩΦ= dvf iI
inert

iI ɺρ       EQ. 3.3.0.2 

or using the EQ. 3.1.0.5 for the accelerations: 

iJJI
inert

iI vdf ɺ∫
Ω

ΩΦΦ= ρ       EQ. 3.3.0.3 

It is usual to define the inertial nodal forces as the product of a mass matrix and the nodal accelerations. Defining 
the mass matrix as: 
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ΩΦΦ= ∫
Ω

dM JIijijIJ ρδ       EQ. 3.3.0.4 

the inertial forces are given by: 

jJijIJ
inert

iI vMf ɺ=        EQ. 3.3.0.5 

3.4 Discrete Equations 

Using the definitions of the internal and external forces, as well as the definition of the inertial forces, it is 
possible to write the weak form of the virtual power principle as: 

( ) 0int =−+ ext
iIiIjJijIJiI ffvMv ɺδ      EQ. 3.4.0.6 

or taking into account the arbitrariness of the virtual velocities: 

ext
iIiIjJijIJ ffvM =+ int

ɺ       EQ. 3.4.0.7 

3.5 Equation of Motion for Translational Velocities  

EQ. 3.4.0.7 is written in matrix notation as:  

intff
dt

dv
M ext −=        EQ. 3.5.0.1 

This is Newton's equation, where: 

∫
Ω

ΩΦΦ= dM Tρ          EQ. 3.5.0.2 

is the mass matrix. 

RADIOSS uses a lumped mass approach, i.e. each node represents a discrete mass of zero size. This creates a 
diagonal mass matrix M, eliminating, as we will see in Chapter 4, the need to solve simultaneous equations for 
the solution of nodal accelerations.  

ext T Tf d bdτ ρ
Γ Ω

= Φ Γ + Φ Ω∫ ∫       EQ. 3.5.0.3 

is the externally applied load vector, and: 

∫
Ω

Ω
∂
Φ∂= d
x

f
j

I
ijiI σint

      EQ. 3.5.0.4 

is the internal force vector. 

Adding to the internal and external forces the anti-hourglass force vector and the contact force vector which will 
be described in the following chapters, we obtain the overall equation of motion: 

 conthgrext ffff
dt

dv
M ++−= int       EQ. 3.5.0.5 

3.6 Equation of Motion for Angular Velocities  

Shell, beam and rigid body theory introduces nodal rotational degrees of freedom. The equations of motion for 
rotational degrees of freedom are complicated if written in the global reference frame. They are much simpler if 
written for each node in the principal reference frame attached to the node. The resulting equations are the 
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standard Euler equations. They are completely analogous to Newton's law governing translational degrees of 
freedom and are stated as follows:  

( ) int
11322311 mmIIl ext −=−+ ωωα      EQ. 3.6.0.1 

( ) int
22313122 mmIIl ext −=−+ ωωα      EQ. 3.6.0.2 

( ) int
33211233 mmIIl ext −=−+ ωωα      EQ. 3.6.0.3 

where  

• 321 ,, III  are the principal moments of inertia about the x, y and z axes respectively,  

• 3,2,1 ααα  are the angular accelerations expressed in the principal reference frame,  

• 3,2,1 ωωω  are the angular velocities,  

• extextext mmm 321 ,,  are the principal externally applied moments,  

• int
3

int
2

int
1 ,, mmm  are the principal internal moments.  

The equation of motion for rotational degrees of freedom is thus very similar to that for translational degrees of 
freedom. In matrix notation and in the nodal principal reference frame:  

( )ωω
FMM

dt

d
I ext +−= int       EQ. 3.6.0.4 

The vector function ( )ωF  is computed for a value of ω  at 2/tt δ− . Equation 3.6.0.4 is used for rigid body 

motion. 

For shell, beam and spring using a spherical inertia, the equation of motion becomes: 

hgrext MMM
dt

d
I +−= intω

      EQ. 3.6.0.5 

where: 

∑=
elements

eII  is the diagonal inertia matrix,  

∑=
elements

extext mM  is the externally applied moment vector,  

∑=
elements

mM intint  is the internal moment vector, 

∑=
shells

hgrhgr mM  is the anti-hourglass shell moment vector. 

3.7 Element Coordinates 

Finite elements are usually developed with shape functions expressed in terms of an intrinsic coordinates system 
ζηξ ,, . It is shown hereafter that expressing the shape functions in terms of intrinsic coordinates is equivalent 

to using material coordinates. 

When an element is treated in terms of intrinsic coordinates, we are concerned with three domains that 
correspond to this element: 

• the domain in the intrinsic coordinates system,  

• the current element domain, 
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• the initial reference element domain. 

ξ  is associated with the direction u 

η  is associated with the direction v 

ζ  is associated with the direction w 

The motion in each element can thus be described by the composition of three maps (the reasoning is described 
only for the direction u): 

• the map from the intrinsic coordinates system to the initial configuration: 

( )ξX    EQ. 3.7.0.1 

• the map from the intrinsic coordinates system to the current configuration: 

( )tx ,ξ    EQ. 3.7.0.2 

• the map from the initial to the current configuration: 

( )tXx ,ϕ=    EQ. 3.7.0.3 

So, it is possible to approximate the motion in an element by: 

( ) ( ) ( )txtx iIIi ξξ Φ=,       EQ. 3.7.0.4 

Shape functions ( )ξIΦ  have no dimensions. They simply relate coordinates in the physical world to the 

intrinsic coordinates system. Writing EQ. 3.7.0.4 at  t=0 , we obtain: 

( ) ( ) ( ) ( ) ( ) iIIiIIii xxxx ξξξξ Φ=Φ== 00,     EQ. 3.7.0.5 

So, it can be seen from the last equation that the material coordinates system and the intrinsic coordinates system 
are invariant in a Lagrangian element. As a result, as intrinsic coordinates are time invariant and it is possible to 
write displacements, velocities and accelerations in terms of intrinsic coordinates (one coordinate system, the 
two other coordinates have similar shape functions): 

( ) ( ) ( )tutu iIIi ξζ Φ=,       EQ. 3.7.0.6 

( ) ( ) ( )tutu iIIi ɺɺ ξζ Φ=,       EQ. 3.7.0.7 

( ) ( ) ( )tvtv iIIi ɺɺ ξζ Φ=,       EQ. 3.7.0.8 

Isoparametric elements use the same shape functions for the interpolation of uux ɺ,,  and vɺ . 

3.8 Integration and Nodal Forces 

In practice, integrals over the current domain in the definition of the internal nodal forces (EQ. 3.5.0.4), of the 
external nodal forces (EQ. 3.5.0.3) and of the mass matrix have to be transformed into integrals over the domain 
in the intrinsic coordinate system ∆ .  

Using EQ. 2.3.0.5, integrals on the current configuration are related to integrals over the reference configuration 
and over the domain in the intrinsic coordinate system by: 

( ) ( ) ( )∫ ∫ ∫
Ω Ω ∆

∆=Ω=Ω
0

0 dFgdFxgdxg ξξ     EQ. 3.8.0.1 

and 
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( ) ( )∫ ∫
Ω ∆

∆=Ω
0

0
0 dFgdXg ξξ       EQ. 3.8.0.2 

where: 

F         EQ. 3.8.0.3 

is the Jacobian determinant of the transformation between the current and the initial configuration, 

ξF         EQ. 3.8.0.4 

is the Jacobian determinant of the transformation between the current configuration and the domain in the 
intrinsic coordinate system and, 

0
ξF         EQ. 3.8.0.5 

is the Jacobian determinant of the transformation between the reference configuration and the intrinsic 
coordinate system. 

On the other hand, it comes from EQ. 2.3.0.2 and EQ. 3.7.0.4: 

( )
kl

j

I

j

k
kj x

x
F

ξ
ξ

ξξ ∂
Φ∂=

∂
∂=       EQ. 3.8.0.6 

So, using EQ. 3.8.0.1, internal forces computed by integration over the current domain will be obtained by the 
following quadrature: 

∫ ∫
Ω ∆

∆
∂
Φ∂=Ω

∂
Φ∂= dF

x
d

x
f

j

I
ij

j

I
ijiI ξσσint     EQ. 3.8.0.7 

and ξF  obtained from EQ. 3.8.0.6. 

External forces and the mass matrix can similarly be integrated over the domain in the intrinsic coordinate 
system. 

3.9 Derivatives of Functions 

The definition of internal forces also shows that derivatives of the form:  

jx∂
∂

        EQ. 3.9.0.1 

need to be computed. These spatial derivatives are obtained by implicit differentiation. Considering the velocity 
gradient e.g.: 

j

i
ij x

v
L

∂
∂=        EQ. 3.9.0.2 

one has: 

11 −−

∂
Φ∂=

∂
∂=

∂
∂

∂
∂= kj

k

I
iIkj

k

i

j

k

k

i
ij FvF

v

x

v
L ξξ ξξ

ξ
ξ

    EQ. 3.9.0.3 

where:  

( )
kI

j

I

j

k
kj x

x
F

ξ
ξ

ξξ ∂
Φ∂=

∂
∂=       EQ. 3.9.0.4 

is the Jacobian matrix of the map between the current coordinates and the intrinsic coordinates.  
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Usually, it is not possible to have closed form expression of the Jacobian matrix. As a result the inversion will be 
performed numerically and numerical quadrature will be necessary for the evaluation of nodal forces. 

3.10 Numerical Quadrature - Reduced Integration 

All elements in RADIOSS are integrated numerically. Hence, the integrals for nodal forces are replaced by a 
summation: 

( ) ( )∫ ∑
=

=
n

j
jj fwdf

1

ξξξ       EQ. 3.10.0.1 

where n is the number of integration points in the element and jw  is the weight associated to the integration 

point j. Values of jw  and locations of jξ  are given in tables according to the numerical quadrature approach. 

RADIOSS uses either full or reduced integration schemes. 

For full integration, the number of integration points is sufficient for the exact integration of the virtual work 
expression. The full integration scheme is often used in programs for static or dynamic problems with implicit 
time integration. It presents no problem for stability, but sometimes involves "locking" and the computation is 
often expensive. 

Reduced integration can also be used. In this case, the number of integration points is sufficient for the exact 
integration of the contributions of the strain field that are one order less than the order of the shape functions. 
The incomplete higher order contributions to the strain field present in these elements are not integrated.  

The reduced integration scheme, especially with one-point quadrature is widely used in programs with explicit 
time integration to compute the force vectors. It drastically decreases the computation time, and is very 
competitive if the spurious singular modes (often called “hourglass modes” which result from the reduced 
integration scheme) are properly stabilized. In two dimensions, a one point integration scheme will be almost 
four times less expensive than a four point integration scheme. The savings are even greater in three dimensions. 
The use of one integration point is recommended to save CPU time, but also to avoid "locking" problems, e.g. 
shear locking or volume locking. 

Shear locking is related to bending behavior. In the stress analysis of relatively thin members subjected to 
bending, the strain variation through the thickness must be at least linear, so constant strain first order elements 
are not well suited to represent this variation, leading to shear locking. Fully integrated first-order isoparametric 
elements (tetrahedron) also suffer from shear locking in the geometries where they cannot provide the pure 
bending solution because they must shear at the numerical integration points to represent the bending kinematic 
behavior. This shearing then locks the element, i.e. the response is far too stiff.  

On the other hand, most fully integrated solid elements are unsuitable for the analysis of approximately 
incompressible material behavior (volume locking). The reason for this is that the material behavior forces the 
material to deform approximately without volume changes. Fully integrated solid elements, and in particular 
low-order elements do not allow such deformations. This is another reason for using selectively reduced 
integration. Reduced integration is used for volume strain and full integration is used for the deviatoric strains. 

However, as mentioned above, the disadvantage of reduced integration is that the element can admit deformation 
modes that are not causing stresses at the integration points. These zero-energy modes make the element rank-
deficient which causes a phenomenon called hour-glassing; the zero-energy modes start propagating through the 
mesh, leading to inaccurate solutions. This problem is particularly severe in first-order quadrilaterals and 
hexahedra. 

To prevent these excessive deformations, a small artificial stiffness or viscosity associated with the zero-energy 
deformation modes is added, leading in EQ. 3.5.0.1 and. EQ. 3.6.0.4 to anti-hourglass force and moment vectors: 

hgrext fff
dt

dv
M +−= int       EQ. 3.10.0.2 

hgrext MMM
dt

d
I +−= intω

      EQ. 3.10.0.3 

Zero-energy or hourglass modes are controlled using a perturbation stabilization as described by Flanagan-
Belytschko [12], or physical stabilization as described in [15] (Chapter 5). 
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So, for isoparametric elements, reduced integration allows simple and cost effective computation of the volume 
integrals, in particular on vectorized supercomputers, and furnishes a simple way to cope with locking aspects, 
but at the cost of allowing hour-glassing. 

 

3.11 Numerical Procedures  

The RADIOSS numerical solver can be summarized by the flow chart in Figure 3.11.1. For each time step in a 
particular analysis, the algorithm used to compute results is:  

  

1. For the displacement, velocity and acceleration at a particular time step, the external force vector is 
constructed and applied.  

  

2. A loop over element is performed, in which the internal and hourglass forces are computed, along with the 
size of the next time step. The procedure for this loop is:  

2a. The Jacobian matrix is used to relate displacements in the intrinsic coordinates system to the physical 
space: 

          
ttj

F
x ξξ ∂

Φ∂=
∂

Φ∂ −1       EQ. 3.11.0.4 

2b. The strain rate is calculated: 

          














∂
∂

+
∂
∂=















∂
Φ∂=

i

j

j

i

j

I
ij x

v

x

v
x

x 2

1
ɺɺε       EQ. 3.11.0.5 

2c. The stress rate is calculated: 

           ( )lawmaterialfij −= ,εσ ɺɺ      EQ. 3.11.0.6 

2d. Cauchy stresses are computed using explicit time integration: 

         ( ) ( ) tttt ∆+=∆+ σσσ ɺ       EQ. 3.11.0.7 

2e. The internal and hourglass force vectors are computed.  

2f. The next time step size is computed, using element or nodal time step methods (Chapter 4.)  

  

3. After the internal and hourglass forces are calculated for each element, the algorithm proceeds by 
computing the contact forces between any interfaces.  

  

4. With all forces known, the new accelerations are calculated using the mass matrix and the external and 
internal force vectors: 

   ( )
ii

ffMv exti int
1 −= −

ɺ       EQ. 3.11.0.8 

  

5. Finally, time integration of velocity and displacement is performed using the new value. 
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Figure 3.11.1 Numerical Procedure 1 
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 ( )
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ijijij
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∆+=∆+

−=

σσσ
σ
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ttt ∆+=

hgrff ,int

∑= iii mFv /ɺ


