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3.0FINITE ELEMENT FORMULATION

3.1 Finite Element Approximation

In the finite element method, the motig(Xt) is approximated by:
x (X,t)= @, (X)x, t) EQ.3.1.0.1

where @, (X) are the interpolating shape functions axd is the position vector of node Summation over

repeated indices is implied. In the case of lowelides, summation is over the number of space diaes. For
upper case indices, summation is over the numbaodés. The nodes in the sum depend on the typatiby
considered. When the volume is considered, the satramis over all the nodes in the domain. Wheelament
is considered, the sum is over the nodes of theezié

Similarly, nodal displacements are defined using £Q.0.2 at nodes:

u, (X,t)=x, (t)- X, EQ. 3.1.0.2
The displacement field is:

u (X, t) =, (X)u, (t) EQ.3.1.0.3
The velocities are obtained by taking the matenaé derivative of the displacement giving:

v (X.t)= % = (X, () £0.3104

It is worth pointing out that the velocity is a redal time derivative of displacements, i.e. thetipaderivative
with respect to time with the material coordinaxed.

Finally, accelerations are similarly given by thaterial time derivative of velocities:
v (X,t) =, (X)v, t) EQ.3.1.05

Emphasis is placed on the fact that shapes furstime functions of the material coordinates whatekie
updated or the total Lagrangian formulation is ugdtithe dependency in the finite element apprcadion of
the motion is taken into account in the valueshefriodal variables.

From EQ. 2.4.1.5, the velocity gradient is given by
ov, 0o

Li=—=v, —-=v,® EQ. 3.1.0.6
ij OX]- il OX]- il 1,j
and the rate of deformation (EQ. 2.4.1.1) by:
1 1
Dij :E(Lij +Lji):E(ViIcDI,j +leq)l,i) EQ. 3.1.0.7
Similarly, the test functions are approximated as:
o (X)=, (X)ov, EQ.3.1.0.8

where OV, are the virtual nodal velocities.

The test functions are next substituted into thecple of virtual power (EQ. 2.10.0.5) giving:

v, j%aﬁdg =3y, [®,p0dQ -3y, [ ®,7,dl +6v, [0 pudQ=0  EQ.3.1.09
Q j Q Iy Q

I
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The virtual velocities must be kinematically adribis, i.e. satisfy boundary conditions éry, the part of the
boundary where kinematical conditions are specifidding the arbitrariness of the virtual nodal wéies
everywhere except oh, , the weak form of the momentum equation is:

0, o
ia_x,.U“dQ —icb,,oth - [ zdr +£¢|pvid§z =0 EQ.3.1.0.10

rU

with I, the part of the boundary where traction loadsraposed.

3.2 Internal and External Nodal Forces

As in Section 2.11, we define the nodal forcesesponding to each term in the virtual power equatio

The internal nodal forces are defined by:

P =, f“int :J"?’ .dQ = o, J'_a do EQ. 3.2.0.1
X

Q J J

The stress is the true (Cauchy) stress.

i =0 (acp JdQ EQ.3.2.0.2
Q aXJ

These nodal forces are called internal becausertgsent the stresses in the body. The expreagiglies to
both the complete mesh or to any element. It ispdi out that derivatives are taken with respecipatial
coordinates and that integration is taken ovecthreent deformed configuration.

The external forces are similarly defined in tewwhghe virtual external power:

oP™ = oy, f,* = 5\4|J.¢|pth +0V, I &, r,dlr EQ.3.2.0.3
Q My
so that external forces are given by:
:IQIdeQ+ I ®,rdr EQ.3.2.0.4
Q My

3.3MassMatrix and I nertial Forces

The inertial body forces are defined by:

pret = d/” f“inert - d/” J¢|p"|dQ = d/“ J.q)llo‘/|dr EQ. 3.3.0.1
Q Q

so that the inertia forces are given by:

£, = [®, phdQ EQ.3.3.0.2
Q

or using the EQ. 3.1.0.5 for the accelerations:

£, = [ pd, ®,dOv, EQ. 3.3.0.3
Q

It is usual to define the inertial nodal forcedfses product of a mass matrix and the nodal acdees Defining
the mass matrix as:
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My, = 5ijj.pq)l ®,dQ EQ. 3.3.04
Q
the inertial forces are given by:

inert .
£, = MiisVis EQ. 3.3.0.5

3.4 Discrete Equations

Using the definitions of the internal and exterfaices, as well as the definition of the inertiatdes, it is
possible to write the weak form of the virtual powenciple as:

N, (M R fi,e"‘): 0 EQ. 3.4.0.6
or taking into account the arbitrariness of théudl velocities:
MV, + £, = £, EQ. 3.4.0.7
3.5 Equation of Motion for Translational Velocities
EQ. 3.4.0.7 is written in matrix notation as:
M av_ fot—fint EQ. 3.5.0.1
dt
This is Newton's equation, where:
M = _[deTdndQ EQ. 3.5.0.2
Q

is the mass matrix.

RADIOSS uses a lumped mass approach, i.e. eachrepdesents a discrete mass of zero size. Thisesrea
diagonal mass matrik, eliminating, as we will see in Chapter 4, thech&® solve simultaneous equations for
the solution of nodal accelerations.

f o :jqurdr +j,o¢deQ EQ. 3.5.0.3
r Q
is the externally applied load vector, and:
f," =0, 9 4o EQ.35.0.4
oX.

Q ]
is the internal force vector.

Adding to the internal and external forces the-antirglass force vector and the contact force vegtoch will
be described in the following chapters, we obthéndverall equation of motion:

dv

Mazfeﬂ_fim_i_fhgr.i.foom EQ 3.5.0.5

3.6 Equation of Motion for Angular Velocities

Shell, beam and rigid body theory introduces nadtdtional degrees of freedom. The equations oiandbr
rotational degrees of freedom are complicated ifter in the global reference frame. They are msiatpler if
written for each node in the principal referencanfe attached to the node. The resulting equatiosghe
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standard Euler equations. They are completely goalo to Newton's law governing translational degree
freedom and are stated as follows:

La, + (I 3~ | 2)6‘)2&% = mm - nlim EQ.3.6.0.1

La, +(1, = 1) = m™ —m,™ EQ. 3.6.0.2

L, +(1, -1 )ww =m™ —m" EQ. 3.6.0.3
where

« 1,1,,1; are the principal moments of inertia about thg and z axes respectively,
« al, a2,a3 are the angular accelerations expressed in theipail reference frame,

« al, a?2,a3 are the angular velocities,
o mP,m>, mg are the principal externally applied moments,

o m™,m", m" are the principal internal moments.

The equation of motion for rotational degrees ekftom is thus very similar to that for translatiocegrees of
freedom. In matrix notation and in the nodal priratireference frame:

I Z—? =M= =M™+ F(w) EQ. 3.6.0.4

The vector functionF (a) is computed for a value at att—A /2. Equation 3.6.0.4 is used for rigid body
motion.

For shell, beam and spring using a spherical iagiftie equation of motion becomes:

da -
[ —=M*-M™+M" EQ. 3.6.0.5
dt
where:
| = Z I, is the diagonal inertia matrix,
elements

M = Z m®* is the externally applied moment vector,
elements

M™ = Zm‘”‘ is the internal moment vector,
elements

M = Z m"" s the anti-hourglass shell moment vector.
shells

3.7 Element Coordinates

Finite elements are usually developed with shapetfons expressed in terms of an intrinsic coorgisaystem
&,n,{ . Itis shown hereafter that expressing the shapetibns in terms of intrinsic coordinates is et
to using material coordinates.

When an element is treated in terms of intrinsiordmates, we are concerned with three domains that
correspond to this element:

* the domain in the intrinsic coordinates system,

» the current element domain,
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» the initial reference element domain.
& is associated with the direction u
) is associated with the direction v
{ is associated with the direction w

The motion in each element can thus be describetidogomposition of three maps (the reasoning seritleed
only for the direction u):

« the map from the intrinsic coordinates system &oitilitial configuration:
X (&) EQ.3.7.0.1
» the map from the intrinsic coordinates system &dtrrent configuration:
x(é,t) EQ.3.7.02
« the map from the initial to the current configuoati
x=¢(X,t) EQ.3.7.0.3
So, it is possible to approximate the motion irefement by:

x(&.t)= @, (&), (t) EQ.3.7.0.4

Shape functiongP, (E) have no dimensions. They simply relate coordindteshe physical world to the
intrinsic coordinates system. Writing EQ. 3.7.0t4=0 , we obtain:

% (€)= x(£.0)= @, (&), (0) = @, (&), EQ.3.7.05

So, it can be seen from the last equation thairthierial coordinates system and the intrinsic cioatds system
are invariant in a Lagrangian element. As a ressltintrinsic coordinates are time invariant and fpossible to
write displacements, velocities and accelerationteirms of intrinsic coordinates (one coordinatstesy, the
two other coordinates have similar shape functions)

u(¢,t) =, (&), () EQ.3.7.0.6
u(2,t) =, (&, ) EQ.3.7.0.7
v(¢,t) =, (&), (t) EQ.3.7.0.8

Isoparametric elements use the same shape funétiotie interpolation ofX,U,U andV.

3.8 Integration and Nodal Forces

In practice, integrals over the current domainhe tefinition of the internal nodal forces (EQ..8.8), of the
external nodal forces (EQ. 3.5.0.3) and of the maatsix have to be transformed into integrals dherdomain

in the intrinsic coordinate systef.

Using EQ. 2.3.0.5, integrals on the current configjon are related to integrals over the referezmdiguration
and over the domain in the intrinsic coordinateesysby:

[a(x)aq = LQ(X)|F|on = [ g(&)F|dn EQ.3.8.0.1

and
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I g(X)dQ, = I g(f)(Fgo‘dA EQ. 3.8.0.2
Qg A

where:
IF| EQ. 3.8.0.3

is the Jacobian determinant of the transformatetwben the current and the initial configuration,
|F5| EQ. 3.8.0.4

is the Jacobian determinant of the transformatietwben the current configuration and the domairthin
intrinsic coordinate system and,

‘F‘,O‘ EQ.3.8.0.5
is the Jacobian determinant of the transformatietwben the reference configuration and the intinsi

coordinate system.
On the other hand, it comes from EQ. 2.3.0.2 andE®Q0.4:

_ % _09,(¢) X, EQ.3.8.0.6

Y Y

So, using EQ. 3.8.0.1, internal forces computednbggration over the current domain will be obtair®y the
following quadrature:

int _ 0P _ 0P
f! t_ E[Uij aledQ - '1'0-” a_le|F5|dA EQ. 3.8.0.7

and|F5| obtained from EQ. 3.8.0.6.

External forces and the mass matrix can similadyiftegrated over the domain in the intrinsic couate
system.

3.9 Derivatives of Functions

The definition of internal forces also shows thattihtives of the form:

9 EQ.3.9.0.1
ax,. T

need to be computed. These spatial derivativestatggned by implicit differentiation. Consideriniget velocity
gradient e.g.:

_ v EQ. 3.9.0.2
b0
one has:
) :ﬂ%:ﬂpﬂ:v 9, EQ.3.9.0.3
Toag ox, o9&, M Mg ¥
where:
%, _ 0P, (¢) EQ. 3.9.0.4

=X = X

is the Jacobian matrix of the map between the ntin@ordinates and the intrinsic coordinates.
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Usually, it is not possible to have closed formresgion of the Jacobian matrix. As a result therision will be
performed numerically and numerical quadrature belinecessary for the evaluation of nodal forces.

3.10 Numerical Quadrature - Reduced Integration

All elements in RADIOSS are integrated numericalifence, the integrals for nodal forces are repldnea
summation:

jf({)d{zzn:wjf({j) EQ. 3.10.0.1
j=1

wheren is the number of integration points in the elemamnd W, is the weight associated to the integration

pointj. Values oij and locations offj are given in tables according to the numericaldgai@re approach.
RADIOSS uses either full or reduced integrationesoés.

For full integration, the number of integration pisi is sufficient for the exact integration of thietual work
expression. The full integration scheme is ofteadus programs for static or dynamic problems viitiplicit
time integration. It presents no problem for siéhilbut sometimes involves "locking" and the corgtion is
often expensive.

Reduced integration can also be used. In this ¢hsenumber of integration points is sufficient the exact
integration of the contributions of the strain dighat are one order less than the order of thpeshanctions.
The incomplete higher order contributions to thraistfield present in these elements are not iateg

The reduced integration scheme, especially withpmiat quadrature is widely used in programs witplieit
time integration to compute the force vectors. Hastically decreases the computation time, andeis/ v
competitive if the spurious singular modes (oftedledd “hourglass modes” which result from the restic
integration scheme) are properly stabilized. In timensions, a one point integration scheme wilabmost
four times less expensive than a four point integnascheme. The savings are even greater in tlingensions.
The use of one integration point is recommendesbi@ CPU time, but also to avoid "locking" problems.
shear locking or volume locking.

Shear locking is related to bending behavior. In the stressyaimlof relatively thin members subjected to
bending, the strain variation through the thicknesst be at least linear, so constant strain éirder elements
are not well suited to represent this variatioagdlag to shear locking. Fully integrated first-ardgparametric
elements (tetrahedron) also suffer from shear fagkn the geometries where they cannot provide pilne
bending solution because they must shear at themcah integration points to represent the bendimgmatic
behavior. This shearing then locks the elementthieeresponse is far too stiff.

On the other hand, most fully integrated solid edata are unsuitable for the analysis of approximate
incompressible material behavior (volume lockinthe reason for this is that the material behaviocds the
material to deform approximately without volume efes. Fully integrated solid elements, and in paldr
low-order elements do not allow such deformatiofkis is another reason for using selectively reduce
integration. Reduced integration is used for volwtmain and full integration is used for the desiat strains.

However, as mentioned above, the disadvantagedatesl integration is that the element can admibrdedition
modes that are not causing stresses at the intgaoints. These zero-energy modes make the eterask-
deficient which causes a phenomenon called howsiylg; the zero-energy modes start propagatingidjirehe
mesh, leading to inaccurate solutions. This problsnparticularly severe in first-order quadrilaisrand
hexahedra.

To prevent these excessive deformations, a sntélteal stiffness or viscosity associated with thero-energy
deformation modes is added, leading in EQ. 3.50d. EQ. 3.6.0.4 to anti-hourglass force and momectors:

M % = fe—finty fhor EQ. 3.10.0.2
Ic(lj—?: M —M™+M " EQ. 3.10.0.3

Zero-energy or hourglass modes are controlled uairngerturbation stabilization as described by Fana
Belytschko [12], or physical stabilization as désed in [15] (Chapter 5).
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So, for isoparametric elements, reduced integraitmws simple and cost effective computation & Wolume
integrals, in particular on vectorized supercomggjtand furnishes a simple way to cope with lockasgects,
but at the cost of allowing hour-glassing.

3.11 Numerical Procedures

The RADIOSS numerical solver can be summarizechbyflow chart in Figure 3.11.1. For each time step
particular analysis, the algorithm used to compeseilts is:

1. For the displacement, velocity and acceleraticen érticular time step, the external force vecgor i
constructed and applied.

2. A'loop over element is performed, in which the iintd and hourglass forces are computed, along théh
size of the next time step. The procedure forltog is:

2a. The Jacobian matrix is used to relate displacesnarthe intrinsic coordinates system to the plajsic
space:

aﬂ :F_laﬂ
e ¢ s

It

EQ. 3.11.0.4

t
2b. The strain rate is calculated:
. GCD, . _l 0Vi 6Vj
&= X=Z| —+—— EQ.3.11.05
0X; 2( 0x; 0%
2c. The stress rate is calculated:
o, = f (¢, material -law) EQ.3.11.0.6
2d. Cauchy stresses are computed using explicit timegration:
ot+at)=oft)+ont EQ.3.11.0.7

2e. The internal and hourglass force vectors are coeapu
2f. The next time step size is computed, using elemenodal time step methods (Chapter 4.)

3. After the internal and hourglass forces areuwtated for each element, the algorithm proceeds by
computing the contact forces between any interfaces

4. With all forces known, the new accelerationsaaleulated using the mass matrix and the extenmel
internal force vectors:

v, =M ‘1(fm - f'm,) EQ.3.11.0.8

5. Finally, time integration of velocity and dispianent is performed using the new value.
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Figure 3.11.1 Numerical Proceduré
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