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RADIOSSTHEORY Version 2017 INTRODUCTION

1.0INTRODUCTION

1.1 Introduction

Nonlinear finite element analyses confront userthvmany choices. An understanding of the fundanienta
concepts of non linear finite element analysisa@sassary if the user does not want to use thee felément
program as a black box. The purpose of this maisualdescribe the numerical methods included iIlDR2SS.

RADIOSS belongs to the family of hydro-codes, inictththe material is considered as a non viscousl.flu
These hydro-codes found their origin in the worgparted by the American Department of Energy atetig of
the 70's and which led to software like DYNA2D/3ETEMP, PRONTO, STEALTH, HONDO and WHAM.

RADIOSS’ main features are:
e a 3D Lagrangian formulation for mesh description
« an explicit time integration scheme, leading to stivae steps
< simplicity, under integrated finite element models

« element by element assembly of nodal forces leaidimg memory codes and low I/O requirements
as compared to implicit approaches where matrigrabty and inversion is required every time step

e non-iterative approaches
« penalty methods based contact

* highly vectorized implementation.

This first chapter introduces the notations whicii tve used throughout the document. An introductio
kinematics is also given.

Chapter 2 recalls the basic equations in non lidgaamics. Different aspects are covered:
« Material and spatial coordinates
* Mesh description
« Kinematic and kinetic descriptions
» Stress rates and stresses in solids
» Updated and total Lagrangian formulations
e Equations of equilibrium
» Principle of virtual power and the physical namépawer terms.
The small strain formulation is also introduced.

The finite element formulation of the virtual powerinciple is introduced in Chapter 3, leading teet
discretized equations of equilibrium.

Chapter 4 deals with time discretization and tHegration schemes. Stability and time step concegsalso
discussed.

Different finite element models are presented ira@ar 5. Tetrahedral solid elements, hexahedrad sold
solid-shell elements, 3 and 4-node shell elemetispde truss and beam elements and spring eleraeats
successively presented.

Chapter 6 deals with kinematic constraints, i.est@ints placed on nodal velocities.

Linear stability is introduced in Chapter 7.
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The very important concept of interfaces is congiden Chapter 8. Interfaces allow the solutiorcofitact and
impact conditions between two parts of a model. Tiféerent interface types available in RADIOSS are
presented.

Material laws are discussed in Chapter 9.

In Chapter 10, the formulations of different kimefsmonitored volumes are presented in detail. Agrifeeory is
also developed.

Chapter 11 deals with the use of explicit algorishto model quasi-static or static problems. Diffitre
approaches are discussed: slow dynamic computatipnamic relaxation, viscous relaxation and energy
discrete relaxation. The dynamic relaxation appno&c developed. The DYREL and DAMP options are
introduced in this chapter.

Chapter 12 concerns the presentation of the fundtaisein RADIOSS parallelization.
In the ALE, CFD and SPH Theory Manual, the ALE fatation is presented in Chapter 1.

Finally, Chapters 2 and 3 are respectively deditdte the Computational Aero-Acoustic and the Smooth
Particle Hydrodynamics formulations.

1.2 Notation

Two types of notation are used:
« Indicial notation: Equations of continuum mechardes usually written in this form.

« Matrix notation: Used for equations pertinent te fimite element implementation.

1.2.1 Index notation

Components of tensors and matrices are given étkplié vector, which is a first order tensor, iembted in
indicial notation byX; . The range of the index is the dimension of thetare

To avoid confusion with nodal values, coordinatel ke written asx, y or z rather than using subscripts.
Similarly, for a vector such as the velocky, numerical subscripts are avoided so as to avoidusion with

node numbers. S =X, X, =Y, X =ZandV, =V,, V, =V, andV;=V,.

Indices repeated twice in a list are summed. Iredigbich refer to components of tensors are alwaytten in
lower case. Nodal indices are always indicated fiyeu case Latin letters. For instantg, is the i-component
of the velocity vector at node |. Upper case indlicepeated twice are summed over their range.

A second order tensor is indicated by two subsgriftor example,Eij is a second order tensor whose

components ark,, Exy,

1.2.2 Matrix notation

Matrix notation is used in the implementation @it element models. For instance, equation
r?=x 0x = x 0k +X, X, + %, X EQ.1.2.21
is written in matrix notation as:

rz=x"x EQ.1.2.2.2

All vectors such as the velocity vectowill be denoted by lower case letters. Rectangmatrices will be
denoted by upper case letters.
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1.3 Kinematics of particles

Kinematics deals with position in space as a famctif time and is often referred to as the “geoynetrmotion”
[96]. The motion of particles may be described tiglo the specification of both linear and angulasrdmates
and their time derivatives. Particle motion on igiiné lines is termedectilinear motion, whereas motion on
curved paths is callecurvilinear motion. Although the rectilinear motion of paréisland rigid bodies is well-
known and used by engineers, the space curvilimezion needs some feed-back, which is describetthén
following section. The reader is invited to cong@R] for more details.

1.3.1 Space curvilinear motion

The motion of a particle along a curved path incepia calledspace curvilinear motion. The position vectdr,
the velocityv, and the acceleration of a particle along a caree

R :xiA+y]+zI2 EQ.1.3.1.1
V=R =Xi+y]j+zk EQ.1.3.1.2
a=R=xi+yj+2k EQ.1.3.1.3

where x, y and z are the coordinates of the partisid i , ] and K the unit vectors in the rectangular

reference. In the cylindrical reference @, 2), the description of space motion calls merely tloe polar
coordinate expression:

VIV, +V, +V, EQ.1.3.1.4
where:

v, =¥

v, =18

V,=2

Also, for acceleration:

a=a +a,+a, EQ.1.3.1.5
where:

a =f-ré?

a,=ré+2ro

a, =12

The vector location of a particle may also be dbsdby spherical coordinates as shown in Figusell.

V=Vg +V,tV, EQ.1.3.1.6
where:

Vs =R

v, = R&cosp

v, =Rg
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Using the previous expressions, the acceleratidritartomponents can be computed:
a=az ta,ta, EQ.1.3.1.7
where:

a,=R-R¢ -R& cos ¢

a,=00%d (R?6)-2Régsing

° R dt
1d 2' '2 .
a =——|R°@|+ R&°singco
= L8 e smpcos

The choice of the coordinate system simplifiesrtfgasurement and the understanding of the problem.

Figure 1.3.1 Vector location of a particle in rectangular, cdliital and spherical coordinates

1.3.2 Coordinate transfor mation

It is frequently necessary to transform vector dii@s from a given reference to another. This sfarmation
may be accomplished with the aid of matrix algebrhe quantities to transform might be the veloaty
acceleration of a particle. It could be its momemtor merely its position, considering the transfation of a
velocity vector when changing from rectangular ybndrical coordinates:

V, cosd sind 0f[V,

V,p=|-sind cos® OQV,t o {V,}=[TRv..}f EQ.1.32.1
vV o o 1|y,

z

The change from cylindrical to spherical coordisateaccomplished by a single rotatignof the axes around
the @-axis. The transfer matrix can be written diredtiym the previous equation where the rotatgproccurs

in theR- ¢ plane:

Vg cosp 0O sing||V,
Vor=| 0 1 0 [{V,r o Vet=[T Vel EQ.1.3.2.2
v, -sing 0 cosp||V,
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Direct transfer from rectangular to spherical cawates may be accomplished by combining EQ. 1.33pd
EQ.1.3.2.2:

Vasot = [T, [T BVspef EQ.1.3.2.3

cospcosd  cospsingd  sing
with: [Tw][Tg]: -sinéd cosf 0
—-singcosd -singsingd cosy

1.3.3 Transformation of reference axes

Consider now the curvilinear motion of two partglé and B in space. Let's study at first the tratish of a
reference without rotation. The motion of A is alvgsl from a translating frame of reference x-y-aving with
the origin B (Figure 1.3.2). The position vectorfofelative to B is:

yg =Xi+yj+zk EQ.1.3.3.1

where i, | andK are the unit vectors in the moving x-y-z systers. tAere is no change of unit vectors in
time, the velocity and the acceleration are deragd

Vas = Xi+Y]+2K EQ.1.3.3.2

a,, = Xi+yj+2zk EQ.1.3.3.3
The absolute position, velocity and acceleratioA afre then:

fa =T *lag EQ.1.3.34

VA = VB + VA/B

aA = aB + aA/B

Figure 1.3.2 Vector location with a moving reference

z
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In the case of rotation reference, it is proved tie angular velocity of the reference axes x#pay be
represented by the vector:

w=w i+ j+twk EQ.1.3.35

The time derivatives of the unit vectolis, ] and K due to the rotation of reference axes x-y-z alioytan be
studied by applying an infinitesimal rotatiardt . We can write:

A

%(f):wxf : %(j):wx] ; %(ﬁ):a)xﬁ EQ. 1.3.3.6

Attention should be turned to the meaning of theetiderivatives of any vector quantéy=Vyi + V,j + VXK in
the rotating system. The derivative\bfwith respect to time as measured in the fixed frXmeZ is:

(de :%G/thyﬁvzl}) EQ.1.337

dt )y,
=[v, S (v, S (iev, S (&) i+ 4V k)
—(an [ +Vya j+VZa K| [+ Vi +V,j+Vk
With the substitution of EQ. 1.3.3.6, the termghia first parentheses becomgs<V . The terms in the second

av
parentheses represent the components of time deeis{— as measured relative to the moving x-y-z
Xyz

reference axes. Thus:

(dvj (dvj
— | =ZwxV+|— EQ.1.3.3.8
dt )y at ).,

This equation establishes the relation betweertithe derivative of a vector quantity in a fixed ®m and the
time derivative of the vector as observed in thatiog system.

Consider now the space motion of a partil@s observed both from a rotating system x-y-zafiged system
X-Y-Z (Figure 1.3.3).

Figure 1.3.3 Vector location with a rotating reference
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The origin of the rotating system coincides with ffosition of a second reference part®Jend the system has
an angular velocitye . Standing for r,, 5, the time derivative of the vector position gives:

A=Tg+lr = V=V +i

EQ.1.3.3.9

From EQ. 1.3.3.8:

. _(dr _

r= a =wWXr+vy EQ. 1.3.3.10

XYzZ

where Vfel denotes the relative velocity measured in X-yez; i

v,, = (dr/dt),, = xi +yj+zk EQ.1.3.3.11
Thus the relative velocity equation becomes:

Vya=VgtaXr+vy EQ.1.3.3.12
The relative acceleration equation is the timewdgive of EQ. 1.3.3.12 which gives:

a,=agtaxr+axi+v, EQ. 1.3.3.13
where the last term can be obtained from EQ. 83.3.

y dvrel

Vi =| —— = WXV, ta, EQ. 1.3.3.14

dt )y,
dv, ot Lot sl
and a, =|—=| =Xi+yj+zk EQ. 1.3.3.15
dt ).,

Combining EQ. 1.3.3.13 to 15, we obtain upon coitecof terms:

la, =3, +axr+ax(axr)+2axv, +a, EQ. 133.16

where the term2a XV, constitutes Coriolis acceleration.

1.3.4 Skew and Frame notionsin RADIOSS

Two kinds of reference definition are availableRADIOSS:
»  Skew reference:

It is a projection reference to define the locahmfities with respect to the global reference.dct the origin of
skew remains at the initial position during the imoteven though a moving skew is defined. In thise; a
simple projection matrix is used to compute theskiatic quantities in the reference.

i Frame reference:

It is a mobile or fixed reference. The quantities @mputed with respect to the origin of the framiéch may
be in motion or not depending to the kind of refieeeframe. For a moving reference frame, the posdind the
orientation of the reference vary in time during thotion. The origin of the frame defined by a npdsition is
tied to the node. EQ. 1.3.3.12 and 16 are usedoiopate the accelerations and velocities in the éam
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