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7.0 LINEAR STABILTY 
The stability of solution concerns the evolution of a process subjected to small perturbations. A process is 
considered to be stable if small perturbations of initial data result in small changes in the solution. The theory of 
stability can be applied to a variety of computational problems. The numerical stability of the time integration 
schemes is widely discussed in section 4.1.6. Here, the stability of an equilibrium state for an elastic system is 
studied. The material stability will be presented in an upcoming version of this manual. 

The stability of an equilibrium state is of considerable interest. It is determined by examining whether 
perturbations applied to that equilibrium state grow.  A famous example of stable and unstable cases is often 
given in the literature. It concerns a ball deposited on three kinds of surfaces as shown in Figure 7.0.1. 

Figure 7.0.1 Schematic presentation of stability  

(a) Stable (b) Unstable (c) Neutral  

It is clear that the state (b) represents an unstable case since a small change in the position of the ball results the 
rolling either to the right or to the left. It is worthwhile to mention here that stability and equilibrium notions are 
quite different. A system in static equilibrium may be in unstable state and a system in evolution is not necessary 
unstable.  

A good understanding of the stability of equilibrium can be obtained by studying the load-deflection curves. A 
typical behavior of a structure in buckling is given in Figure 7.0.2. The load-deflection curves are slightly 
different for systems with and without imperfection. In the first case, the structure is loaded until the bifurcation 
point B corresponding to the first critical load level. Then, two solutions are mathematically acceptable: response 
without buckling (BA), response after buckling (BC). 

In the case of structures with imperfection, no bifurcation point is observed. The behavior before buckling is not 
linear and the turning point D is the limit point in which the slope of the curve changes sign. If the behavior 
before buckling is linear or the nonlinearity before the limit point is not high, the linear stability technique can be 
used to determine the critical load. The method is based on the perturbation of the equilibrium state. As the 
perturbations are small, the linearized model is used. The method is detailed in the following section. 

 

Figure 7.0.2 Bifurcation and limit points in load-deflection curves for system with and without imperfections 

B: Bifurcation point, D: Limit point 
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7.1 General theory of linear stability 

The principle of virtual power and the minimum of total potential energy are the various mathematical models 
largely used in Finite Element Method. Under small-perturbations assumption these notions can be applied to the 
equilibrium state in order to study the stability of the system. 

Consider the example of the ball on the three kinds of surfaces as shown in Figure 7.0.1. If Π  is the total 
potential energy, the equilibrium is obtained by: 

0=Πδ  => Static equilibrium   EQ.7.1.0.1 

Applying a small perturbation to the equilibrium state, the variation of the total potential energy can be written 
as: 

( ) ( ) Π+Π=∆+Π 2δδδ ttt     EQ.7.1.0.2 

Where Π2δ  is the second variation of the potential energy. Then, the three cases can be distinguished: 

02 >Πδ  => Stable (case a)   EQ.7.1.0.3 

 => The energy increases around the equilibrium state. 

02 <Πδ  => Unstable (case b)   EQ.7.1.0.4 

 => The energy decreases around the equilibrium state. 

02 =Πδ  => Neutral stability (case c)   EQ.7.1.0.5 

 => The energy remains unchanged around the equilibrium state. 

The last case is used to compute the critical loads: 

02
int

22 =Π+Π=Π extδδδ     EQ.7.1.0.6 

Where, the indices int and ext denote the interval and external parts of the total potential energy. After the 
application of the application of finite element method, the stability equation in a discrete form can be written as: 

02
int

22 =Π+Π=Π ∑∑
n

e
ext

n

e δδδ    EQ.7.1.0.7 

{ } 02

0

en

S

e
ext dSfX

e

δδδ ∫=Π     EQ.7.1.0.8 

[ ][ ] [ ][ ]( ) 0
int

2

0

e

V

e dVSESE
e

∫ +=Π δδδ    EQ.7.1.0.9 

Where e designate element and: 

 { }nf  : vector of the external forces 

 Xδ  : virtual displacement vector 

 [ ]E : Green-Lagrange strain tensor 

 [ ]S  : Piola-Kirchhoff stress tensor 
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The equation EQ.7.1.0.9 is written as a function of X, the displacement between the initial configuration 0C  and 

the critical state tC . If LX  and LS  are the linear response obtained after application the load Lf  in the initial 

configuration 0C , in linear theory of stability suppose that the solution in tC  for the critical load crf  is 

proportional to the linear response: 

{ } { }Lcr XX λ=  

{ } { }Lcr SS λ=    EQ.7.1.0.10 

{ } { }Lcr FF λ=  

If you admit that the loading does not depend on the deformation state, the hypothesis 02 =Π extδ  is then true. 

Using EQ. 2.4.2.6 and denoting [e] for the linear part of Green-Lagrange strain tensor and [ ]η  for the nonlinear 

part, you have: 

{ } { } { }η+= eE    EQ.7.1.0.11 

Putting this equation in EQ.7.1.0.9, you obtain: 

[ ]{ } [ ]{ } [ ][ ] { }( )( ) 022

0

e

V

LLext
e dVESCeeCeCe

e
∫ +++=Π δδηδδδηλδδδ  EQ.7.1.0.12 

Or  [ ] ( )[ ] [ ]( )( ){ }XkXkkX Luext
e δλδδ σ++=Π2    EQ.7.1.0.13 

Where [ ]k  is the stiffness matrix, [ ]uk  the initial displacement matrix, [ ]σk  initial stress or geometrical 

stiffness matrix and [ ]C  the elastic matrix. 

The linear theory of stability allows estimating the critical loads and their associated modes by resolving an 
eigenvalue problem: 

[ ] [ ] [ ]( )( ){ } 0=++ XKKK u δλ σ    EQ.7.1.0.14 

Linear stability assumes the linearity of behavior before buckling. If a system is highly nonlinear in the 

neighborhood of the initial state 0C , moderate perturbations may lead to unstable growth. In addition, in case of 
path-dependent materials, the use of method is not conclusive from an engineering point of view. However, the 
method is simple and provides generally good estimations of limit points. 

The resolution procedure consists in two main steps. First, the linear solution for the equilibrium of the system 

under the application of the load { }LF  is obtained. Then, EQ.7.10.14 is resolved to compute the first desired 

critical loads and modes. The methods to compute the eigen values are those explained in section 4.2. 

 

 


