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9.0 MATERIAL LAWS 

A large variety of materials is used in the structural components and must be modeled in stress analysis problems. 
For any kind of these materials a range of constitutive laws is available to describe by a mathematical approach 
the behavior of the material. The choice of a constitutive law for a given material depends at first to desired quality 
of the model. For example, for standard steel, the constitutive law may take into account the plasticity, anisotropic 
hardening, the strain rate, and temperature dependence. However, for a routine design maybe a simple linear elastic 
law without strain rate and temperature dependence is sufficient to obtain the needed quality of the model. This is 
the analyst design choice. On the other hand, the software must provide a large constitutive library to provide 
models for the more commonly encountered materials in practical applications.  

RADIOSS material library contains several distinct material laws. The constitutive laws may be used by the analyst 
for general applications or a particular type of analysis. You can also program a new material law in RADIOSS. 
This is a powerful resource for the analyst to code a complex material model. 

Theoretical aspects of the material models that are provided in RADIOSS are described in this chapter. The 
available material laws are classified in Table 9.0.1. This classification is in complementary with those of 
RADIOSS input manual. The reader is invited to consult that one for all technical information related to the 
definition of input data. 
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Table 9.0.1 Material law description 
Group Model description Law number in 

RADIOSS (MID)  

Elasto-plasticity Materials Johnson-Cook (2) 

Zerilli-Armstrong (2) 

von Mises isotropic hardening with 
polynomial pressure 

(3) 

Johnson-Cook (4) 

Gray model (16) 

Ductile damage for solids and 
shells 

(22) 

Ductile damage for solids (23) 

Aluminum, glass, etc. (27) 

Hill (32) 

Tabulated piecewise linear (36) 

Cowper-Symonds (44) 

Zhao (48) 

Steinberg-Guinan (49) 

Ductile damage for porous 
materials, Gurson 

(52) 

Foam model (53) 

3-Parameter Barlat (57) 

Tabulated quadratic in strain rate (60) 

Hänsel model (63) 

Ugine and ALZ approach (64) 

Elastomer (65) 

Visco-elastic (66) 

Anisotropic Hill (72) 

Thermal Hill Orthotropic (73) 

Thermal Hill Orthotropic 3D (74) 

Semi-analytical elasto-plastic (76) 

Yoshida-Uemori (78) 

Brittle Metal and Glass (79) 

High strength steel (80) 

Swift and Voce elastio-plastic 
Material 

(84) 

Barlat YLD2000 (87) 

Hyper and Visco-elastic Closed cell, elasto-plastic foam (33) 

Boltzman (34) 

Generalized Kelvin-Voigt (35) 

Tabulated law (38) 
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Group Model description Law number in 
RADIOSS (MID)  

Generalized Maxwell-Kelvin (40) 

Ogden-Mooney-Rivlin (42) 

Hyper visco-elastic (62) 

Tabulated input for Hyper-elastic (69) 

Tabulated law - hyper visco-elastic (70) 

Tabulated law - visco-elastic foam (77) 

Ogden material (82) 

Arruda-Boyce Hyperelastic 
Material 

(92) 

Composite and Fabric Tsai-Wu formula for solid (12) 

Composite Solid (14) 

Composite Shell Chang-Chang (15) 

Fabric (19) 

Composite Shell (25) 

Fabric (58) 

Concrete and Rock Drucker-Prager for rock or concrete 
by polynominal 

(10) 

Drucker-Prager for rock or concrete (21) 

Reinforced concrete (24) 

Drücker-Prager with cap (81) 

Honeycomb Honeycomb (28) 

Crushable foam (50) 

Cosserat Medium (68) 

Multi-Material, Fluid and 
Explosive Material 

Jones Wilkins Lee model (5) 

Hydrodynamic viscous (6) 

Hydrodynamic viscous with k-ε (6) 

Boundary element (11) 

Boundary element with k-ε (11) 

ALE and Euler formulation (20) 

Hydrodynamic bi-material liquid 
gas material 

(37) 

Lee-Tarver material (41) 

Viscous fluid with LES subgrid 
scale viscosity 

(46) 

Solid, liquid, gas and explosives (51) 

Connections Materials Predit rivets (54) 

Connection material (59) 

Advanced connection material (83) 

Other Materials Fictitious (0) 
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Group Model description Law number in 
RADIOSS (MID)  

Hooke (1) 

Purely thermal material (18) 

SESAM tabular EOS, used with a 
Johnson-Cook yield criterion 

(26) 

Superelastic Law for Shape 
Memory Alloy 

(71) 

Porous material (75) 

GAS material GAS (-) 

User material (29~31) 

 

9.1 Isotropic Elastic Material  

Two kinds of isotropic elastic materials are considered: 

• Hooke’s law for linear elastic materials, 

• Ogden and Mooney-Rivlin laws for nonlinear elastic materials. 

These material laws are used to model purely elastic materials, or materials that remain in the elastic range. The 
Hooke’s law requires only two values to be defined; the Young's or elastic modulus E, and Poisson's ratio, . 
The law represents a linear relation between stress and strain. 

The Ogden’s law is applied to slightly compressible materials as rubber or elastomer foams undergoing large 
deformation with an elastic behavior [34]. The strain energy W is expressed in a general form as a function of 

 :  

( ) ( ) 2

p
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p
321 )1J(

2
K

3,,W ppp −+−λ+λ+λ
α
µ

=λλλ ∑
ααα    EQ. 9.1.0.1 

where , ith principal stretch ( , being the ith principal engineering strain), , relative 

volume: , i
3
1

i J λ=λ
−

 is the deviatoric stretch, and,  and 
 
material constants. 

This law is very general due to the choice of coefficient  and . 

For an incompressible material, we have J=1. For uniform dilatation: 

        EQ. 9.1.0.2 

The strain energy function can be decomposed into deviatoric and spherical parts:  
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For which the deviator of the Cauchy stress tensor, and the pressure would be: 
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The only deviatoric stress above is retained, and the pressure is computed independently as follows: 

   EQ. 9.1.0.9 

where 
 
a user-defined function related to the bulk modulus K: 

       EQ. 9.1.0.10 

       EQ. 9.1.0.11 

 being the ground shear modulus, and  the Poisson's ratio. 

Note: For an incompressible material you have  . However,  is a good compromise to avoid 
too small time steps in explicit codes. 

 

J
J

i
i =
∂
∂
λ

λ

)1()( −= JJfKp bulk

bulkf

( )
( )υ

υµ
213

12
−
+⋅=K

2

∑ ⋅
= p

pp αµ
µ

µ υ

5.0≈υ 495.0=υ



RADIOSS THEORY Version 2017  MATERIALS 
 

01-Jan-2017 8

Mooney-Rivlin material law admits two basic assumptions: 

• The rubber is incompressible and isotropic in unstrained state, 

• The strain energy expression depends on the invariants of Cauchy tensor. 

The three invariants of the Cauchy-Green tensor are: 

2
3

2
2

2
11 λλλ ++=I  

  EQ. 9.1.0.14 

  for incompressible material 

The Mooney-Rivlin law gives the closed expression of strain energy as: 

      EQ. 9.1.0.15 

with: 

 

 EQ. 9.1.0.16 

 

 

The model can be generalized for a compressible material. 

Viscous effects are modeled through the Maxwell model:  

 

Maxwell model 

Where, the shear modulus of the hyper-elastic law µ is exactly the long-term shear modulus G∞. 

τi are relaxation times: 
i

i

G

ητ =i  

Rate effects are modeled through visco-elasticity using convolution integral using Prony series.  This 
corresponds to extension of small deformation theory to finite deformation. 
 
This viscous stress is added to the elastic one. 
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The visco-Kirchoff stress is given by: 
 

[ ]dsFFdev
ds

d
eG

m

i

T
t st

i
v i∑ ∫

=

−−
=

1 0

)(ττ  EQ. 9.1.0.17 

Where, m is the order of the Maxwell model, F is the deformation gradient matrix, , FJF 3

1−
=  and 

)( TFFdev  denotes the deviatoric part of tensor TFF . 

 
The viscous-Cauchy stress is written as: 
 

)t(
J
1

)t( vv τ=σ  EQ. 9.1.0.18 

9.2 Composite and Anisotropic Materials 

The orthotropic materials can be classified into following cases: 
 

• Linear elastic orthotropic shells as fabric 

• Nonlinear orthotropic pseudo-plastic solids as honeycomb materials 

• Elastic-plastic orthotropic shells 

• Elastic-plastic orthotropic composites 
 
The purpose of this section is to describe the mathematical models related to composite and orthotropic materials. 
 

9.2.1 Fabric law for elastic orthotropic shells (laws 19 and 58)  
Two elastic linear models and a nonlinear model exist in RADIOSS. 

9.2.1.1 Fabric linear law for elastic orthotropic shells (law 19) 
A material is orthotropic if its behavior is symmetrical with respect to two orthogonal plans. The fabric law enables 
to model this kind of behavior. This law is only available for shell elements and can be used to model an airbag 
fabric. Many of the concepts for this law are the same as for law 14 which is appropriate for composite solids. If 
axes 1 and 2 represent the orthotropy directions, the constitutive matrix C is defined in terms of material properties: 

   EQ. 9.2.1.1 
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where the subscripts denote the orthotropy axes. As the matrix C is symmetric: 

   EQ. 9.2.1.2 

Therefore, six independent material properties are the input of the material: 
 

E 11 = Young's modulus in direction 1  

E 22 = Young's modulus in direction 2  

12 = Poisson's ratio 

G 12 , G 23 , G 31 = Shear moduli for each direction 

The coordinates of a global vector  is used to define direction 1 of the local coordinate system of orthotropy.  

The angle  is the angle between the local direction 1 (fiber direction) and the projection of the global vector  
as shown in Figure 9.2.1.  

Figure 9.2.1 Fiber Direction Orientation 

 

The shell normal defines the positive direction for . Since fabrics have different compression and tension 
behavior, an elastic modulus reduction factor, RE, is defined that changes the elastic properties of compression. 

The formulation for the fabric law has a  reduction if  as shown in Figure 9.2.2. 

Figure 9.2.2 Elastic Compression Modulus Reduction  
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9.2.1.2 Fabric nonlinear law for elastic anisotropic shells (law 58) 
This law is used with RADIOSS standard shell elements and anisotropic layered property (type 16). The fiber 
directions (warp and weft) define the local axes of anisotropy. Material characteristics are determined 
independently in these axes. Fibers are nonlinear elastic and follow the equation: 

2

2

( )

2

( )
max  

2ii

i ii
ii i ii

i ii
ii i ii

B
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B
Eε

εσ ε

εσ ε

= −

 
= − 
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0

0

d

d
d

d

σ
ε
σ
ε

>

≤
 and i=1,2   EQ. 9.2.1.3 

The shear in fabric material is only supposed to be function of the angle between current fiber directions (axes of 
anisotropy): 

00 )tan( τατ −= G            if      Tαα ≤    EQ. 9.2.1.4 

0)tan( τατ −+= AGG    if      Tαα >  

and 

)tan()( 0 TA GGG α−= , 
)(tan1 2

T

TG
G

α+
=  with )tan( 000 ατ G=  

Where Tα  is a shear lock angle, GT  is a tangent shear modulus at Tα , and G0 is a shear modulus at α  = 0. If  

G0 = 0, the default value is calculated to avoid shear modulus discontinuity at Tα :  G0 = G. 

Figure 9.2.4 Elastic Compression Modulus Reduction  

 

0α  is an initial angle between fibers defined in the shell property (type 16). 

The warp and weft fiber are coupled in tension and uncoupled in compression. But there is no discontinuity 
between tension and compression. In compression only fiber bending generates global stresses. Figure 9.2.5 
illustrates the mechanical behavior of the structure.  

 

α
warp weft 

φ
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Figure 9.2.5 Local frame definition 

 

A local micro model describes the material behavior (Figure 9.2.6). This model represents just ¼ of a warp fiber 
wave length and ¼ of the weft one. Each fiber is described as a nonlinear beam and the two fibers are connected 
with a contacting spring. These local nonlinear equations are solved with Newton iterations at membrane 
integration point. 

Figure 9.2.6 Local frame definition 

 

 

9.2.2 Nonlinear pseudo-plastic orthotropic solids (laws 28, 50 and 
68)  

9.2.2.1 Conventional nonlinear pseudo-plastic orthotropic solids (laws 28 
and 50) 
These laws are generally used to model honeycomb material structures as crushable foams. The microscopic 
behavior of this kind of materials can be considered as a system of three independent orthogonal springs. The 
nonlinear behavior in orthogonal directions can then be determined by experimental tests. The behavior curves are 
injected directly in the definition of law. Therefore, the physical behavior of the material can be obtained by a 
simple law. However, the microscopic elasto-plastic behavior of a material point cannot be represented by 
decoupled unidirectional curves. This is the major drawback of the constitutive laws based on this approach. The 
cell direction is defined for each element by a local frame in the orthotropic solid property. If no property set is 
given, the global frame is used. 

 
Warp traction (free in weft direction) 

Warp compression (no traction in weft) 

Warp 

Weft 

 

Traction 
(fiber coupling) 

Compression 
(no coupling) 
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Figure 9.2.7 Local frame definition 

 

 

The Hooke matrix defining the relation between the stress and strain tensors is diagonal, as there is no Poisson's 
effect: 

   EQ. 9.2.2.1 

An isotropic material may be obtained if: 

 
and     EQ. 9.2.2.2 

Plasticity may be defined by a volumic strain or strain dependent yield curve (Figure 9.2.8). The input yield stress 
function is always positive. If the material undergoes plastic deformation, its behavior is always orthotropic, as all 
curves are independent to each other. 

Figure 9.2.8 Honeycomb typical constitutive curve 

 
The failure plastic strain may be input for each direction. If the failure plastic strain is reached in one direction, 
the element is deleted. The material law may include strain rate effects (law 50) or may not (law 28). 
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9.2.2.2 Cosserat medium for nonlinear pseudo-plastic orthotropic solids 
(law 68) 
Conventional continuum mechanics approaches cannot incorporate any material component length scale. 
However, a number of important length scales as grains, particles, fibers, and cellular structures must be taken into 
account in a realistic model of some kinds of materials. To this end, the study of a microstructure material having 
translational and rotational degrees-of-freedom is underlying. The idea of introducing couple stresses in the 
continuum modelling of solids is known as Cosserat theory which returns back to the works of brothers Cosserat 
in the beginning of 20th century [110]. A recent renewal of Cosserat mechanics is presented in several works of 
Forest et al [111], [112], [113], and [114]. A short summary of these publications is presented in this section. 

Cosserat effects can arise only if the material is subjected to non-homogeneous straining conditions. A Cosserat 
medium is a continuous collection of particles that behave like rigid bodies. It is assumed that the transfer of the 
interaction between two volume elements through surface element dS occurs not only by means of a traction and 
shear forces, but also by moment vector as shown in Figure 9.2.9. 

Figure 9.2.9 Equilibrium of Cosserat volume element 

 

Surface forces and couples are then represented by the generally non-symmetrical force-stress and couple-stress 

tensors ijσ  and ijµ  (units MPA and MPa-m): 

jiji nt σ=   ;    jiji nm µ=    EQ. 9.2.2.3 

The force and couple stress tensors must satisfy the equilibrium of momentums: 

iijij uf ɺɺρσ =+,  

iiklikljij Ic φσεµ ɺɺ=+−,    EQ. 9.2.2.4 

Where, if  are the volume forces, ic  volume couples, ρ  mass density, I the isotropic rotational inertia and iklε  

the signature of the perturbation (i,k,l).  

In the often used couple-stress, the Cosserat micro-rotation is constrained to follow the material rotation given by 
the skew-symmetric part of the deformation gradient: 

kjijki u ,2

1εφ −=    EQ. 9.2.2.5 

The associated torsion-curvature and couple stress tensors are then traceless. If a Timoshenko beam is regarded as 
a one-dimensional Cosserat medium, constraint EQ. 9.2.2.5 is then the counterpart of the Euler-Bernoulli 
conditions. 
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The resolution of the previous boundary value problem requires constitutive relations linking the deformation and 
torsion-curvature tensors to the force- and couple-stresses. In the case of linear isotropic elasticity, we have: 

..

..
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eee

γκκβδαµ

µµδλσ

++=

++=
   EQ. 9.2.2.6 

Where 
.Symm

ije  and 
.SymmSkew

ije  are respectively the symmetric and skew-symmetric part of the Cosserat 

deformation tensor. Four additional elasticity moduli appear in addition to the classical Lamé constants.  

Cosserat elastoplasticity theory is also well-established. von Mises classical plasticity can be extended to 
micropolar continua in a straightforward manner. The yield criterion depends on both force- and couple-stresses: 

( ) ( ) Rbbssassaf jiijijijjiijijij −+++= µµµµµσ 21212

3
,    EQ. 9.2.2.7 

Where, s denotes the stress deviator and ai, and bi are the material constants. 

Cosserat continuum theory can be applied to several classes of materials with microstructures as honeycombs, 
liquid crystals, rocks and granular media, cellular solids and dislocated crystals. 

 

9.2.3 Hill’s Law for Orthotropic Plastic Shells 
Hill’s law models an anisotropic yield behavior. It can be considered as a generalization of von Mises yield criteria 
for anisotropic yield behavior. The yield surface defined by Hill can be written in a general form: 

 

 EQ. 9.2.3.1 

Where, the coefficients F, G, H, L, M and N are the constants obtained by the material tests in different orientations. 

The stress components  are expressed in the Cartesian reference parallel to the three planes of anisotropy.  

EQ.9.2.3.1 is equivalent to von Mises yield criteria if the material is isotropic.  

 

In a general case, the loading direction is not the orthotropic direction. In addition, we are concerned with the plane 
stress assumption for shell structures. In planar anisotropy, the anisotropy is characterized by different strengths 
in different directions in the plane of the sheet. The plane stress assumption will enable to simplify EQ. 9.2.3.1, 

and write the expression of equivalent stress  as: 

   EQ. 9.2.3.2 

The coefficients  are determined using Lankford’s anisotropy parameter : 
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Where the Lankford’s anisotropy parameters  are determined by performing a simple tension test at angle  

to orthotropic direction 1: 

   EQ. 9.2.3.4 

The equivalent stress  is compared to the yield stress  which varies in function of plastic strain  and the 

strain rate  (law 32): 

   EQ. 9.2.3.5 

 
Therefore, the elastic limit is obtained by: 

   EQ. 9.2.3.6 

The yield stress variation is shown in Figure 9.2.10. 
 

Figure 9.2.10 Yield stress variation  

 
 
The strain rates are defined at integration points. The maximum value is taken into account: 

     EQ. 9.2.3.7 

In RADIOSS, it is also possible to introduce the yield stress variation by a user-defined function (law 43). Then, 
several curves are defined to take into account the strain rate effect. 
 
It should be noted that as Hill’s law is an orthotropic law, it must be used for elements with orthotropy properties 
as Type 9 and Type 10 in RADIOSS. 
 

9.2.3.1 Anistropic Hill Material Law with MMC Fract ure Model 
(Law 72) 
This material law uses an anistropic Hill yield function along with an associated flow rule. A simple isotropic 
hardening model is used  coupled with a modified Mohr fracture criteria. The yield condition is written as  
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Where, Hillσ  is the Equivalent Hill stress given as: 

• For 3D model (Solid)

( ) ( ) ( ) 222222 222 xyzxyzyyxxxxzzzzyyHill NMLHGF σσσσσσσσσσ +++−+−+−=  

• For Shell  

( ) 2222 2 xyyyxxxxyyhill NHGF σσσσσσ +−++=  

Where,  F, G, H, N, M, and L are Six Hill anisotropic parameters. 

 
For the yield surface a modified swift law is employed to describe the isotropic hardening in the application of 
the plasticity models : 

( )n

ppyy εεσσ += 00  

 

with 
0
yσ  is the initial yield stress, 

0
pε  is the initial equivalent plastic strain, pε  is the equivalent plastic strain 

and n is a material constant. 

 
Modified Mohr fracture criteria : 
A damage accumulation is computed as: 

∫=
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Where, fε  is a plastic strain fracture for the modified Mohr fracture criteria is given by : 

• Anisotropic 3D model 
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Where, 3J  is the third invariant of the deviatoric stress. 

• 2D Anisotropic Model 
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With: 
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Where, 1C , 2C  and 3C  are parameters for MMC fracture model. 

The fracture initiates when D = 1. 

In order to represent realistic process of an element, a softening function β   is introduced to 
reduce the deformation resistance. The yield surface is modified as: 

( )n

ppyy εεσβσ += 00  

with  
m

c

c

D
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


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



−
−=

1
β  

Where, Dc is Critical damage.  

We have crack propagation when CDD <<1  in this case 10 <<β  is considered to reduce the 

yield surface otherwise the β  =1.   

The element is deleted if cDD ≥ . 

 

9.2.4 Elastic-Plastic Orthotropic Composite Shells  
Two kinds of composite shells may be considered in the modeling: 

• Composite shells with isotropic layers 

• Composite shells with at least one orthotropic layer 

The first case can be modeled by an isotropic material where the composite property is defined in element property 
definition as explained in Chapter 5. However, in the case of composite shell with orthotropic layers the definition 
of a convenient material law is needed. Two dedicated material laws for composite orthotropic shells exist in 
RADIOSS: 

• Material law COMPSH (25) with orthotropic elasticity, two plasticity models and brittle tensile failure, 

• Material law CHANG (15) with orthotropic elasticity, fully coupled plasticity and failure models. 

These laws are described here. The description of elastic-plastic orthotropic composite laws for solids is presented 
in the next section. 

9.2.4.1 Tensile behavior 
The tensile behavior is shown in Figure 9.2.12. The behavior starts with an elastic phase. Then, reached to the 
yield state, the material may undergo an elastic-plastic work hardening with anisotropic Tsai-Wu yield criteria. It 
is possible to take into account the material damage. The failure can occur in the elastic stage or after plastification. 
It is started by a damage phase then conducted by the formation of a crack. The maximum damage factor will 
allow these two phases to separate. The unloading can happen during the elastic, elastic-plastic or damage phase. 
The damage factor d varies during deformation as in the case of isotropic material laws (law 27). However, three 
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damage factors are computed; two damage factors  and  for orthotropy directions and the other  for 

delamination: 

 

   EQ. 9.2.4.1 

 

Figure 9.2.11  Shear strain 

 

where  and  are the tensile damages factors. The damage and failure behavior is defined by introduction of 

the following input parameters: 

= Tensile failure strain in direction 1  

= Maximum strain in direction 1  

= Tensile failure strain in direction 2  

 = Maximum strain in direction 2  

= Maximum damage (residual stiffness after failure)  
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Figure 9.2.12 Tensile behavior of composite shells 
 

9.2.4.2 Delamination 
The delamination equations are: 

      EQ. 9.2.4.2 

      EQ. 9.2.4.3 

where 
 
is the delamination damage factor. The damage evolution law is linear with respect to the shear strain. 

Let 
 
then: 

for   iniγ γ=  

for  maxγ γ=         EQ. 9.2.4.4 

 

9.2.4.3 Plastic behavior 
The plasticity model is based on the Tsai-Wu criterion, which enable to model the yield and failure phases. The 
criteria are given by [57]: 

   EQ. 9.2.4.5 

  

( ) 3133131 1 γσ dG −=

( ) 2332323 1 γσ dG −=

3d

2
23

2
31 γγγ +=

03 =d

13 =d

( ) 2112
2
1244

2
222

2
1112211 2 σσσσσσσσ FFFFFFF +++++=

(1-dmax) E 



RADIOSS THEORY Version 2017  MATERIALS 
 

01-Jan-2017 21

Where   ;  

 ;  

;  

Where,  is the reduction factor. The six other parameters are the yield stresses in tension and compression for 
the orthotropy directions which can be obtained uniaxial loading tests:  

 = Tension in direction 1 of orthotropy 

= Tension in direction 2 of orthotropy 

 = Compression in direction 1 of orthotropy 

= Compression in direction 2 of orthotropy 

= Compression in direction 12 of orthotropy 

= Tension in direction 12 of orthotropy 

The Tsai-Wu criteria are used to determine the material behavior: 

•  : elastic state 

•  : plastic admissible state      EQ. 9.2.4.6 

•  : plastically inadmissible stresses 

For  the cross-sections of Tsai-Wu function with the planes of stresses in orthotropic directions is shown 

in Figure 9.2.13.  
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Figure 9.2.13 Cross-sections of Tsai-Wu yield surface for   

 

If , the stresses must be projected on the yield surface to satisfy the flow rule.  is compared to a 

maximum value  varying in function of  the plastic work  during work hardening phase: 

      EQ. 9.2.4.7 

Where, b is the hardening parameter and n is the hardening exponent.  

Therefore, the plasticity hardening is isotropic as illustrated in Figure 9.2.14.  
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Figure 9.2.14 Isotropic plasticity hardening 

 

9.2.4.4 Failure behavior 
The Tsai-Wu flow surface is also used to estimate the material rupture by means of two variables: 

• plastic work limit , 

• maximum value of yield function . 

If one of the two conditions is satisfied, the material is ruptured. The evolution of yield surface during work 
hardening of the material is shown in Figure 9.2.15. 

Figure 9.2.15 Evolution of Tsai-Wu yield surface 
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The model will allow the simulation of the brittle failure by formation of cracks. The cracks can either be oriented 
parallel or perpendicular to the orthotropic reference frame (or fiber direction), as shown in Figure 9.2.16. For 

plastic failure, if the plastic work  is larger than the maximum value  for a given element, then the 

element is considered to be ruptured. However, for a multi-layer shell, several criteria may be considered to model 
a total failure. The failure may happen: 
 

• If  for one layer, 

• If  for all layers, 

• If  or tensile failure in direction 1 for each layer, 

• If  or tensile failure in direction 2 for each layer, 

• If  or tensile failure in directions 1 and 2 for each layer, 

• If  or tensile failure in direction 1 for all layers, 

• If  or tensile failure in direction 2 for all layers, 

• If  or tensile failure in directions 1 and 2 for each layer. 

 
The last two cases are the most physical behaviors; but the use of failure criteria depends, at first, to the analyst’s 
choice. In RADIOSS the flag IOFF defines the used failure criteria in the computation. 

 
Figure 9.2.16 Crack orientation 

 

In practice, the use of brittle failure model allows to estimate correctly the physical behavior of a large rang of 
composites. But on the other hand, some numerical oscillations may be generated due to the high sensibility of 
the model. In this case, the introduction of an artificial material viscosity is recommended to stabilize results. In 
addition, in brittle failure model, only tension stresses are considered in cracking procedure. 

The ductile failure model allows plasticity to absorb energy during a large deformation phase. Therefore, the 
model is numerically more stable. This is represented by CRASURV model in RADIOSS. The model makes 
also possible to take into account the failure in tension, compression and shear directions as described in the 
following.  

9.2.4.5 Strain rate effect 
The strain rate is taken into account within the modification of EQ. 9.2.4.7 which acts through a scale factor: 
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Where,  

  : plastic work 

ref
pW  : reference plastic work 

b : plastic hardening parameter 
n : plastic hardening exponent 
c : strain rate coefficient (equal to zero for static loading). 

 
The last equation implies the growing of the Tsai-Wu yield surface when the dynamic effects are increasing. The 
effects of strain rate are illustrated in Figure 9.2.17. 
 

Figure 9.2.17 Strain rate effect in work hardening 

 

9.2.4.6 CRASURV model 
The CRASURV model is an improved version of the former law based on the standard Tsai-Wu criteria. The main 
changes concern the expression of the yield surface before plastification and during work hardening. First, in 
CRASURV model the coefficient F44 in EQ. 9.2.4.5 depends only on one input parameter: 

         EQ. 9.2.4.9 

Another modification concerns the parameters Fij in EQ. 9.2.4.5 which are expressed now in function of plastic 
work and plastic work rate as in EQ. 9.2.4.8: 
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where the five sets of coefficients b, n and c should be obtained by experience. The work hardening is shown in 
Figure 9.2.18. 
 

Figure 9.2.18 CRASURV plasticity hardening 

 
 
The CRASURV model will allow the simulation of the ductile failure of orthotropic shells. The plastic and failure 
behaviors are different in tension and in compression. The stress softening may also be introduced in the model to 
take into account the residual Tsai-Wu stresses. The evolution of CRASURV criteria with hardening and softening 
works is illustrated in Figure 9.2.19. 

 
Figure 9.2.19  Flow surface in CRASURV model 
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9.2.4.7 Chang-Chang model 
Chang-Chang law [58], [59] incorporated in RADIOSS is a combination of the standard Tsai-Wu elastic-plastic 
law and a modified Chang-Chang failure criteria [60]. The affects of damage are taken into account by decreasing 
stress components using a relaxation technique to avoid numerical instabilities.  
 
Six material parameters are used in the failure criteria: 

 Longitudinal tensile strength 

 Transverse tensile strength 

 Shear strength 

 Longitudinal compressive strength 

 Transverse compressive strength 

 Shear scaling factor. 
 
Where, 1 is the fiber direction. 
 
The failure criterion for fiber breakage is written as: 
 
• Tensile fiber mode:  

 EQ. 9.2.4.11 

• Compressive fiber mode:  

 EQ. 9.2.4.12 

For matrix cracking, the failure criterion is: 
 

• Tensile matrix  mode:  

 EQ. 9.2.4.13 

• Compressive matrix mode:  

 EQ. 9.2.4.14 

If the damage parameter is equal to or greater than 1.0, the stresses are decreased by using an exponential function 
to avoid numerical instabilities. A relaxation technique is used by gradually decreasing the stress: 

   EQ. 9.2.4.15 
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With:  and  where: 

t   is the time 

 is the start time of relaxation when the damage criteria are assumed 

 is the time of dynamic relaxation 

  is the stress components at the beginning of damage (for matrix cracking ) 

9.2.5 Elastic-Plastic Orthotropic Composite Solids  
The material law COMPSO (14) in RADIOSS allows to simulate orthotropic elasticity, Tsai-Wu plasticity with 
damage, brittle rupture and strain rate effects. The constitutive law applies to only one layer of lamina. Therefore, 
each layer needs to be modeled by a solid mesh. A layer is characterized by one direction of the fiber or material. 
The overall behavior is assumed to be elasto-plastic orthotropic.  

Direction 1 is the fiber direction, defined with respect to the local reference frame  as shown in Figure 

9.2.20.  

Figure 9.2.20 Local reference frame 

 
 

For the case of unidirectional orthotropy (i.e.  and ) the material law (53) in RADIOSS 

allows to simulate an orthotropic elastic-plastic behavior by using a modified Tsai-Wu criteria. 

9.2.5.1 Linear elasticity 
When the lamina has a purely linear elastic behavior, the stress calculation algorithm is as follows:  

1. Transform the lamina stress, , and strain rate, dij, from global reference frame to fiber reference frame.  

2. Compute lamina stress at time  by explicit time integration:  

     EQ. 9.2.5.1 

3. Transform the lamina stress, , back to global reference frame.  

The elastic constitutive matrix C of the lamina relates the non-null components of the stress tensor to those of 
strain tensor:  
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The inverse relation is generally developed in term of the local material axes and nine independent elastic 
constants: 
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   EQ. 9.2.5.3 

where  are the Young’s modulus, 
 
shear modulus and ijν  Poisson’s ratios.  is the strain components 

due to the distortion. 
 

Figure 9.2.21  Strain components and distortion 

 
 

9.2.5.2 Orthotropic plasticity 
Lamina yield surface defined by Tsai-Wu yield criteria is used for each layer: 
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��� = �
����	 �����    ��� = �

����	 �����    ��� = �
����	 �����  ; 

 ;  

where  is the yield stress in direction i, c and t denote respectively for compression and tension.  

represents the yield envelope evolution during work hardening with respect to strain rate effects: 

   EQ. 9.2.5.5 

where  is the plastic work, B  the hardening parameter, n the hardening exponent and c strain rate coefficient.  

 is limited by a maximum value : 

   EQ. 9.2.5.6 

If the maximum value is reached the material is failed.  

In EQ. 9.2.5.5, the strain rate effects on the evolution of yield envelope. However, it is also possible to take into 

account the strain rate  effects on the maximum stress  as shown in Figure 9.2.22. 

 
Figure 9.2.22  Strain rate dependency 
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(b) No strain rate effect on  
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9.2.5.3 Unidirectional Orthotropy  
Law (53) in RADIOSS provides a simple model for unidirectional orthotropic solids with plasticity. The 
unidirectional orthotropy condition implies: 

   EQ. 9.2.5.7 

 

The orthotropic plasticity behavior is modeled by a modified Tsai-Wu criterion (EQ. 9.2.5.4) in which: 

   EQ. 9.2.5.8 

where   is yield stress in 45° unidirectional test. The yield stresses in direction 11, 22, 12, 13 and 45° are 

defined by independent curves obtained by unidirectional tests (Figure 9.2.23). The curves give the stress variation 

in function of a so-called strain : 

   EQ. 9.2.5.9 

Figure 9.2.23 Yield stress curve for a unidirectional orthotropic material 

 
 

9.2.6 Elastic-plastic anisotropic shells (Barlat’s law) 
Barlat’s 3- parameter plasticity model is developed in [100] for modelling of sheet under plane stress assumption 
with an anisotropic plasticity model. The anisotropic yield stress criterion for plane stress is defined as: 
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where eσ  is the yield stress, a and c are anisotropic material constants, m Barlat’s exponent and 1K  and 2K  are 

defined by: 
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=    EQ. 9.2.6.2 
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where h and p are additional anisotropic material constants. All anisotropic material constants, except for p which 
is obtained implicitly, are determined from Barlat width to thickness strain ratio R from: 
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The width to thickness ratio for any angle ϕ  can be calculated according to [100] by: 
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where ϕσ  is the uniaxial tension in the ϕ  direction. Let ϕ  = 45°, EQ. 9.2.6.4 gives an equation from which the 

anisotropy parameter p can be computed implicitly by using an iterative procedure:  
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It is worthwhile to note that Barlat’s law reduces to Hill’s law when using m=2.  

 

9.3 Elasto-Plasticity of Isotropic Materials  

The strain hardening behavior of materials is a major factor in structural response as metal working processes or 
plastic instability problems. A proper description of strain hardening at large plastic strains is generally imperative.  
For many plasticity problems, the hardening behavior of the material is simply characterized by the strain-stress 
curve of the material. For the proportional loading this is generally true. However, if the loading path is combined, 
the characterization by a simple strain-stress curve is no longer adequate.  

The incremental plasticity theory is generally used in computational methods. Plasticity models are written as rate-
dependent or independent. A rate-dependent model is a one in which the strain rate does affect the constitutive 
law. This is true for a large range of metals at low temperature relative to their melting temperature. 
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Most isotropic elastic-plastic material laws in RADIOSS use von Mises yield criteria as given in section 2.7.2. 
Several kinds of models are integrated. The models involve damage for ductile or brittle failures with or without 
dislocation. The cumulative damage law can be used to access failure. The next few paragraphs describe theoretical 
bases of the integrated models. 

9.3.1 Johnson-Cook plasticity model (law 2) 
In this law the material behaves as linear elastic when the equivalent stress is lower than the yield stress. For higher 
value of stress, the material behavior is plastic. This law is valid for brick, shell, truss and beam elements. The 
relation between describing stress during plastic deformation is given in a closed form:  

     EQ. 9.3.1.1 

where: 

= Flow stress (Elastic + Plastic Components)  

= Plastic Strain (True strain)  

a = Yield Stress  

b = Hardening Modulus  

n = Hardening Exponent 

c = Strain Rate Coefficient  

 = Strain Rate  

 
= Reference Strain Rate  

m = Temperature exponent 

 

 
is the melting temperature in Kelvin degrees. The adiabatic conditions are assumed for temperature 

computation: 

      EQ. 9.3.1.2 

Where, ρCp is the specific heat per unit of volume,  is the initial temperature (in degrees Kelvin), and is 

the internal energy. 

Two optional additional inputs are: 

max 0σ  = Maximum flow stress  

= Plastic strain at rupture 

Figure 9.3.1 shows a typical stress-strain curve in the plastic region. When the maximum stress is reached during 
computation, the stress remains constant and material undergoes deformation until the maximum plastic strain. 

Element rupture occurs if the plastic strain is larger than . If the element is a shell, the ruptured element is 

deleted. If the element is a solid element, the ruptured element has its deviatoric stress tensor permanently set to 
zero, but the element is not deleted. Therefore, the material rupture is modeled without any damage effect. 
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Figure 9.3.1 Stress - Plastic Strain Curve 

 

Chard in this material law is same like in /MAT/LAW44. More detail for Chard see 9.3.3. 
 

9.3.1.1 Strain rate definition 
Regarding to the plastification method used, the strain rate expression is different. If the progressive plastification 
method is used (i.e. integration points through the thickness for thin-walled structured), the strain rate is: 

     EQ. 9.3.1.3 

       EQ. 9.3.1.4 

With global plastification method, we have: 

       EQ. 9.3.1.5 

where 
 
is the internal energy. 

For solid elements, the maximum value of the strain rate components is used: 

     EQ. 9.3.1.6 

9.3.1.2 Strain rate filtering 
The strain rates exhibit very high frequency vibrations which are not physical. The strain rate filtering option will 
enable to damp those oscillations and; therefore obtain more physical strain rate values. 

If there is no strain rate filtering, the equivalent strain rate is the maximum value of the strain rate components: 

     EQ. 9.3.1.7 
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For thin-walled structures, the equivalent strain is computed by the following approach. If  is the main 
component of strain tensor, the kinematic assumptions of thin-walled structures allows to decompose the in-plane 
strain into membrane and flexural deformations: 

   EQ. 9.3.1.8 

Then, the expression of internal energy can by written as: 

   EQ. 9.3.1.9 

Therefore: 
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The expression can be simplified to: 

   EQ. 9.3.1.11 

   EQ. 9.3.1.12 

 
The expression of the strain rate is derived from EQ. 9.3.1.8: 

   EQ. 9.3.1.13 

Admitting the assumption that the strain rate is proportional to the strain, i.e.: 

   EQ. 9.3.1.14 

   EQ. 9.3.1.15 

Therefore: 

   EQ. 9.3.1.16 

Referring to EQ. 9.3.1.12, it can be seen that an equivalent strain rate can be defined using a similar expression 
to the equivalent strain: 

   EQ. 9.3.1.17 

   EQ. 9.3.1.18 
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For solid elements, the strain rate is computed using the maximum element stretch: 

   EQ. 9.3.1.19 

The strain rate at integration point, i in /ANIM/TENS/EPSDOT/i (1<i<n) is calculated by the following expression: 

   EQ. 9.3.1.20 

Where 
 
is the membrane strain rate /ANIM/TENS/EPSDOT/MEMB and 

 
is the bending strain rate 

/ANIM/TENS/EPSDOT/BEND. 
 
The strain rate in upper and lower layers is computed by: 

 /ANIM/TENS/EPSDOT/UPPER    EQ. 9.3.1.21 

 /ANIM/TENS/EPSDOT/LOWER    EQ. 9.3.1.22 

The strain rate is filtered by using the following equation: 

   EQ. 9.3.1.23 

where: 

  

Where,  is the time interval,  is the cutting frequency, and is the filtered strain rate. 

 
9.3.1.3 Example: Strain rate filtering  

An example of material characterization for a simple tensile test is given in RADIOSS Example Manual. For the 
same example a strain rate filtering allows to remove high frequency vibrations and obtain smoothed the results. 
This is shown in Figures 9.3.2 and 9.3.3 where the cut frequency Fcut = 10 KHz is used. 
 

Figure 9.3.2 Force comparison in example 9.3.1.3 
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Figure 9.3.3 First principal strain rate comparison (max = 10%) 

 
 

9.3.2 Zerilli-Armstrong plasticity model (law 2) 
This law is similar to the Johnson-Cook plasticity model. The same parameters are used to define the work 
hardening curve. However, the equation that describes stress during plastic deformation is:  
 

   EQ. 9.3.2.1 

where: 

 = Stress (Elastic + Plastic Components)  

 
= Plastic Strain  

 = Temperature (computed as in Johnson Cook plasticity) 

 
= Yield Stress  

n = Hardening Exponent 

 = Strain Rate, must be 1 s-1 converted into user's time unit 

 
= Reference Strain Rate  

Additional inputs are: 

max 0σ = Maximum flow stress  

= Plastic strain at rupture 

 

The  enables to define element rupture as in the former law. The theoretical aspects related to strain rate 

computation and filtering are also the same. 
 

9.3.3 Cowper-Symonds plasticity model (law 44) 
This law models an elasto-plastic material with: 

• isotropic and kinematic hardening  

• tensile rupture criteria 
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The damage is neglected in the model. The work hardening model is similar to the Johnson Cook model (law 2) 
without temperature effect where the only difference is in the strain rate dependent formulation. The equation that 
describes the stress during plastic deformation is:  

      EQ. 9.3.3.1 

where,  = Flow stress (Elastic + Plastic Components)  

 
= Plastic Strain (True strain)  

a = Yield Stress  

b = Hardening Modulus  

n = Hardening Exponent 

c = Strain Rate Coefficient  

 = Strain Rate  

1/p = strain rate exponent 

The implanted model in RADIOSS allows the cyclic hardening with a combined isotropic-kinematic approach.  

The coefficient Chard varying between zero and unity is introduced to regulate the weight between isotropic and 
kinematic hardening models. 

In isotropic hardening model, the yield surface inflates without moving in the space of principle stresses. The 
evolution of the equivalent stress defines the size of the yield surface, as a function of the equivalent plastic strain. 
The model can be represented in one dimensional case as shown in Figure 9.3.4. When the loading direction is 
changed, the material is unloaded and the strain reduces. A new hardening starts when the absolute value of the 
stress reaches the last maximum value (Figure 9.3.4(a)).  
 

Figure 9.3.4 Isotropic and Kinematic hardening models for deformation decrease 

(a) Isotropic hardening (b) Prager-Ziegler kinematic hardening 

  

  

 

This law is available for solids and shells. Refer to the RADIOSS Input Manual for more information about 
element/material compatibilities. 
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9.3.4 Zhao plasticity model (law 48) 
The elasto-plastic behavior of material with strain rate dependence is given by Zhao formula [61], [62]: 

   EQ. 9.3.4.1 

where:    = plastic strain 

  = strain rate 
 A = Yield stress 
 B = hardening parameter 
 n = hardening exponent 
 C = relative strain rate coefficient 
 D = strain rate plasticity factor 
 m = Relative strain rate exponent 

 E = strain rate coefficient 
 k = strain rate exponent 

In the case of material without strain rate effect, the hardening curve given by EQ. 9.3.4.1 is identical to those of 
Johnson-Cook. However, Zhao law allows a better approximation of strain rate dependent materials by introducing 
a nonlinear dependency.  

As described for Johnson-Cook law, a strain rate filtering can be introduced to smooth the results. The plastic flow 
with isotropic or kinematic hardening can be modeled as described in section 9.3.3. The material failure happens 
when the plastic strain reaches a maximum value as in Johnson-Cook model. However, two tensile strain limits 
are defined to reduce stress when rupture starts: 

   EQ. 9.3.4.2 

Where,  is the largest principal strain, and  and  are rupture strain limits. 

 

If , the stress is reduced by EQ. 9.3.4.2.  When  the stress is reduced to zero. 
 

9.3.5 Tabulated piecewise linear and quadratic elasto-plastic laws 
(laws 36 and 60) 
The elastic-plastic behavior of isotropic material is modeled with user-defined functions for work hardening curve. 
The elastic portion of the material stress-strain curve is modeled using the elastic modulus, E, and Poisson's ratio, 

. The hardening behavior of the material is defined in function of plastic strain for a given strain rate (Figure 
9.3.5). An arbitrary number of material plasticity curves can be defined for different strain rates. For a given strain 
rate, a linear interpolation of stress for plastic strain change, can be used. This is the case of law 36 in RADIOSS. 
However, in law 60 a quadratic interpolation of the functions allows to better simulate the strain rate effects on the 
behavior of material as it is developed in law 60. For a given plastic strain, a linear interpolation of stress for strain 
rate change is used. Compared to Johnson-Cook model (law 2), there is no maximum value for the stress. The 
curves are extrapolated if the plastic deformation is larger than the maximum plastic strain. The hardening model 
may be isotropic, kinematic or a combination of the two models as described in section 9.3.3. The material failure 
model is the same as in Zhao law. 

For some kinds of steels the yield stress dependence to pressure has to be incorporated especially for massive 
structures. The yield stress variation is then given by: 

   EQ. 9.3.5.1 
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Where, p is the pressure defined by EQ. 2.7.2.1. Drucker-Prager model described in section 9.3.6 gives a nonlinear 

function for . However, for steel type materials where the dependence to pressure is low, a simple linear 

function may be considered: 

   EQ. 9.3.5.2 

Where, C is user-defined constant and p the computed pressure for a given deformed configuration. 
Chard in /MAT/LAW36 is same like in /MAT/LAW44. For more detail on Chard, see 9.3.3. 

 
Figure 9.3.5 Piecewise linear stress-strain curves 

 

 
 

 
 
The principal strain rate is used for the strain rate definition: 

   EQ. 9.3.5.3 

For strain rate filtering, refer to section 9.3.1.2. 

9.3.6 Drucker-Prager constitutive model (laws 10 & 21) 
For materials like soils and rocks the frictional and dilatational effects are significant. In these materials, the plastic 
behavior depends on the pressure as the internal friction is proportional to the normal force. Furthermore, for 
frictional materials, associative plasticity laws, in which the plastic flow is normal to the yield surface, are often 
inappropriate. Drucker-Prager [63] yield criterion uses a modified von Mises yield criteria to incorporate the 
effects of pressure for massive structures: 

      EQ. 9.3.6.1 

where: 

 = second invariant of deviatoric stress  

P = pressure 

A0 , A1, A2 = material coefficients 
 

Figure 9.3.6 shows EQ. 9.3.6.1 in the plane of  and P. The criterion expressed in the space of principal 

stresses represents a revolutionary surface with an axis parallel to the trisecting of the space as shown in Figure 
9.3.7. This representation is in contrast with the von Mises criteria where yield criterion has a cylindrical shape. 
Drucker-Prager criterion is a simple approach to model the materials with internal friction because of the symmetry 
of the revolution surface and the continuity in variation of normal to the yield surface. 
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The pressure in the material is determined in function of volumetric strain for loading phase: 

 for loading    EQ. 9.3.6.2 

Where,  is a user-defined (law 21) or a cubic polynomial function (law 10). For unloading phase, if the 

volumetric strain has a negative value, a linear relation is defined as: 

 for unloading  and    EQ. 9.3.6.3 

For unloading with a positive volumetric strain, another linear function may be used: 

  for unloading  and    EQ. 9.3.6.4 

In RADIOSS Drucker-Prager model is used in laws 21 and 2. Neither of these laws can reproduce the mono-
dimensional behavior.  In addition, no viscous effect is taken into account.  
 
 

Figure 9.3.6  Yield Criteria in the plane of  and P. 
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Figure 9.3.7  Drucker-Prager yield criteria in space of principal stresses 

 

 
 

Figure 9.3.8  Material pressure variation in function of volumetric strain 
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9.3.7 Brittle damage for Johnson-Cook plasticity model (law 27) 
Johnson-Cook plasticity model is presented in section 9.3.1. For shell applications, a simple damage model can be 
associated to this law to take into account the brittle failure. The crack propagation occurs in the plan of shell in 
the case of mono-layer property and through the thickness if a multi-layer property is defined (Figure 9.3.9). 
 

Figure 9.3.9  Damage Affected Material 

 
 

 

The elastic-plastic behavior of the material is defined by Johnson-Cook model. However, the stress-strain curve 
for the material incorporates a last part related to damage phase as shown in Figure 9.3.10. The damage parameters 
are:  

 
= Tensile rupture strain in direction 1  

 = Maximum strain in direction 1  

 
= Maximum damage in direction 1  

 
= Maximum strain for element deletion in direction 1  

The element is removed if one layer of element reaches the failure tensile strain, . The nominal and effective 

stresses developed in an element are related by:  

       EQ. 9.3.7.1 

Where, 0 < d < 1  is the damage factor. 

The strains and the stresses in each direction are given by:  

   EQ. 9.3.7.2 

   EQ. 9.3.7.3 

   EQ. 9.3.7.4 

   EQ. 9.3.7.5 

   EQ. 9.3.7.6 
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The conditions for these equations are:  

0 < d < 1  

 ; d = 0  

 ; d = 1  

A linear damage model is used to compute the damage factor in function of material strain. 

       EQ. 9.3.7.7 

The stress-strain curve is then modified to take into account the damage by EQ. 9.3.7.1. Therefore:  

      EQ. 9.3.7.8 

The softening condition is given by:  

          EQ. 9.3.7.9 

 
The mathematical approach described here can be applied to the modeling of rivets. Predit law in RADIOSS allows 
achievement of this end by a simple model where for the elastic-plastic behavior a Johnson-Cook model or a 
tabulated law (36) may be used.   

 
Figure 9.3.10 Stress-strain curve for damage affected material 

 
 

9.3.8 Brittle damage for reinforced concrete materials (law 24) 
The model is a continuum, plasticity-based, damage model for concrete. It assumes that the main two failure 
mechanisms are tensile cracking and compressive crushing of the concrete material. The material law will enable 
to formulate the brittle elastic – plastic behavior of the reinforced concrete. 
 
The input data for concrete are: 

E c Young's modulus (32000 MPa) 

 
Poisson's ratio (0.2) 

 
Uniaxial compressive strength (32 MPa) 
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f  t /f c Tensile strength ratio (default = 0.1)  

f  b /f c Biaxial strength ratio (default = 1.2)  

f  2 /f c confined strength ratio (default = 4.0)  

s 0 /f c confining stress ratio (default = 1.25) 
 
Experimental results enable to determine the material parameters. This can be done by in-plane unidirectional and 
bi-axial tests as shown in Figure 9.3.11. The expression of the failure surface is in a general form as: 

   EQ. 9.3.8.1 

where: 

 = second invariant of stress  

= mean stress  

= lode angle with  

 
A schematic representation of the failure surface in the principal stress space is given in Figure 9.3.12. The yield 

surface is derived from the failure envelope by introducing a scale factor k( , ). The meridian planes are 

presented in Figure 9.3.13. 
 

The steel directions are defined identically to material law 14 by a type 6 property set. If a property set is not given 
in the element input data, r ,s ,  are taken respectively as direction 1, 2, 3. For quad elements, direction 3 is 
taken as the  direction. 
 
Steel data properties are:  

E = Young's modulus  

 
= Yield strength 

E t = Tangent modulus 

 = Ratio of reinforcement in direction 1 

 = Ratio of reinforcement in direction 2 

 
= Ratio of reinforcement in direction 3 
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Figure 9.3.11  Failure surface in plane stress 

 

 
 

 
Figure 9.3.12  Failure surface in principal stress space 
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Figure 9.3.13  Meridians of failure and yield surfaces  

 

 
 
 

 

 

9.3.9 Ductile damage model 
In section 9.3.7, a damage model for brittle materials is presented. It is used in RADIOSS law (27) valid for shell 
meshes. The damage is generated when the shell works in traction only. A generalized damage model for ductile 
materials is incorporated in RADIOSS laws (22), and (23). The damage is not only generated in traction but also 
in compression and shear. It is valid for solids and shells.  The elastic-plastic behavior is formulated by Johnson-
Cook model. The damage is introduced by the use of damage parameter, . The damage appears in the material 

when the strain is larger than a maximum value, : 

 

o If   Law 22 is identical to law 2. 

o If 
 
and  

 
This implies an isotropic damage with the same effects in tension and compression. The inputs of the model are 

the starting damage strain 
 
and the slope of the softening curve Et as shown in Figure 9.3.14.  

For brick elements the damage law can be only applied to the deviatoric part of stress tensor sij and 

. This is the case of law (22) in RADIOSS. However, if the application of damage law to 

stress tensor  is expected, RADIOSS law (23) may be used. 
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Figure 9.3.14 Ductile damage model  

 
 
 
The strain rate definition and filtering for these laws are explained in section 9.3.1. The strain rate  may or may 

not affect the maximum stress value 
 
according to the user's choice as shown in Figure 9.3.15.  

 
Figure 9.3.15 Strain rate dependency 

(a) Strain rate effect on  

 

(b) No strain rate effect on  

  
 

 

 

 

 

 

 

 
 

9.3.10 Ductile damage model for porous materials (Gurson law 
52) 
The Gurson constitutive law [64] models progressive microrupture through void nucleation and growth. It is 
dedicated to high strain rate elasto-viscoplastic porous metals. A coupled damage mechanical model for strain rate 
dependent voided material is used. The material undergoes several phases in the damage process as described in 
Figure 9.3.16. 
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Figure 9.3.16 Damage process for visco-elastic-plastic voided materials 

 
 
The constitutive law takes into account the void growth, nucleation and coalescence under dynamic loading. The 
evolution of the damage is represented by the void volume fraction, defined by:   

   EQ. 9.3.10.1 

Where aV , mV  are respectively the elementary apparent volume of the material and the corresponding elementary 

volume of the matrix. The rate of increase of the void volume fraction is given by: 

   EQ. 9.3.10.2 

The growth rate of voids is calculated by: 

   EQ. 9.3.10.3 

Where Trace[Dp] is the trace of the macroscopic plastic strain rate tensor. The nucleation rate of voids is given by 
the following expression: 

   EQ. 9.3.10.4 

Where fN  is the nucleated void volume fraction, SN  is the Gaussian standard deviation, εN is the nucleated effective 
plastic strain and εM is the admissible plastic strain.  
 
The viscoplastic flow of the porous material is described by: 
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Where the von Mises is effective stress;  is the admissible elasto-viscoplastic stress;  is the 

hydrostatic stress and  is the specific coalescence function which can be written as: 

   EQ. 9.3.10.6 

Where: 

•   is the critical void volume fraction at coalescence, 

•  is the critical void volume fraction at ductile fracture, 

•   is the corresponding value of the coalescence function 
1

1

q
fu = , ( ) uF fff =* . 

 
The variation of the specific coalescence function is shown in Figure 9.3.17. 
 

Figure 9.3.17 Variation of specific coalescence function 

 
 
The admissible plastic strain rate is computed as follows: 

   EQ. 9.3.10.7 

Where  is the Cauchy stress tensor;  is the admissible plastic stress and Dp is the macroscopic plastic strain 

rate tensor which can be written in the case of the associated plasticity as: 

   EQ. 9.3.10.8 

with  the yield surface envelope. The viscoplastic multiplier is deduced from the consistency condition: 

   EQ. 9.3.10.9 
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 EQ. 9.3.10.10 

where: 

   EQ. 9.3.10.11 

9.3.11 Connect materials (law 59) 

For the moment /MAT/LAW59 is only compatible with /PROP/TYPE43 and /FAIL/CONNECT. 

Solid connection element and material: 

These materials and properties are only compatible with each other; /FAIL/CONNECT, and the designated 
failure model. 

They are designed for spotweld, welding line or glue type connections. 

The property is only compatible with standard 8 node brick elements. The element orientation with respect to 
the connected surfaces is important, and must be defined, as shown below:  

Figure 9.3.18 solid connect element 

 
 
The main characteristic of CONNECT property is the time step is independent on the element height, only on 
the section surface area. Hence, it can be used for glue or spotweld connections, with null height distance. 

 
Element definition: 

The element local coordinate system is constructed in the mid-plane section between the bottom and top faces. 
The orientation is the same as in RADIOSS shell elements: 
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Figure 9.3.19 Points 1a, 2a, 3a and 4a are in the mid distance between bottom and top face nodes 

 
 
The local element system is fully corotational (not only convected), local deformations are thus independent on 
rigid element rotations. 
 
The element has four Gauss integration points placed in the mid plane section. Element deformation in each 
point is constructed using nodal displacements and linear function forms in the following way: 
 
 Dzz = sum(Ni*Vzi)i=5,6,7,8 - sum(Nj*Vzj)j=1,2,3,4 
 Dxz = sum(Ni*Vxi)i=5,6,7,8 - sum(Nj*Vxj)j=1,2,3,4 
 Dyz = sum(Ni*Vyi)i=5,6,7,8 - sum(Nj*Vyj)j=1,2,3,4 

Vx, Vy, and Vz being nodal velocities in local corotational system and  Ni the function forms. 
 
It’s important to note that these independent variables are not deformations but relative displacements 
(velocities).  

The element has only three “strain” components – traction/compression in normal (Z) direction and both 
transverse shears XZ and YZ. Actually, in-plane shear, as well as lateral tractions/compressions does not give 
any resistance forces. It’s a pure “connection” element and is not intended to be used in independent way. Both 
upper and bottom faces have to be tied to different structural parts. 
 
Material law:  

The elastic-plastic behavior is modeled independently in normal and tangent (in-plane) directions in each Gauss 
integration points, using user-defined functions for work hardening curve. There is no coupling between normal 
and shear direction in the material law. The hardening model is purely isotropic. Different number of hardening 
curves may be defined in each direction, for different values of deformation rate.  

For a given strain rate, a linear interpolation between corresponding curves is used to find the value of the yield 
stress for the actual plastic elongation. 

Deformation rates may be optionally filtered. In this regard, the law is similar to the classical elastic-plastic 
tabulated approach. 
 
Nodal forces are assembled using stress components calculated in each Gauss integration point, and additional 
treatment is performed to assure global force and moment balance at every time step.   
 
Input parameters for material law:  

The material stiffness parameters are input as total element rigidity per section area, which is equivalent to the 
Young and shear modulus per height unit [kg / (m² s²)]. 

The hardening functions are expressed as engineering stress relative to plastic elongations. 
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Element stability: 
The element does not have its own elementary time step. Corresponding nodal time step is calculated using 
nodal masses and stiffness to assure the numerical stability. In RADIOSS v12.0 the nodal time step is imposed to 
the whole model, in the next releases the elementary time step is option is maintained if chosen in the engine 
input file, only the connection material elements will use nodal time step. 

 

9.4 Viscous materials  

General case of viscous materials represents a time-dependent inelastic behavior. However, special attention is 
paid to the viscoelastic materials such as polymers exhibiting a rate- and time-dependent behavior. The 
viscoelasticity can be represented by a recoverable instantaneous elastic deformation and a non-recoverable 
viscous part occurring over the time. The characteristic feature of viscoelastic material is its fading memory. In a 
perfectly elastic material, the deformation is proportional to the applied load. In a perfectly viscous material, the 
rate of change of the deformation over time is proportional to the load. When an instantaneous constant tensile 

stress  is applied to a viscoelastic material, a slow continuous deformation of the material is observed. When 

the resulting time dependent strain , is measured, the tensile creep compliance is defined as : 

   EQ. 9.4.0.1 

The creep behavior is mainly composed of three phases: (i) primary creep with fast decrease in creep strain rate, 
(ii) secondary creep with slow decrease in creep strain rate and (iii) tertiary creep with fast increase in creep strain 
rate. The creep strain rate is the slope of creep strain to time curve. 
 

Another kind of loading concerns viscoelastic materials subjected to a constant tensile strain, . In this case, the 

stress,  which is called stress relaxation, gradually decreases. The tensile relaxation modulus is then defined 

as: 

   EQ. 9.4.0.2 

Because viscoelastic response is a combination of elastic and viscous responses, the creep compliance and the 
relaxation modulus are often modeled by combinations of springs and dashpots. A simple schematic model of 
viscoelastic material is given by the Maxwell model shown in Figure 9.4.1. The model is composed of an elastic 
spring with the stiffness E and a dashpot assigned a viscosity . It is assumed that the total strain is the sum of 

the elastic and viscous strains: 

   EQ. 9.4.0.3 

Figure 9.4.1 Maxwell model 
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The time derivation of the last expression gives the expression of the total strain rate: 

   EQ. 9.4.0.4 

As the dashpot and the spring are in series, the stress is the same in the two parts: 

   EQ. 9.4.0.5 

 
The constitutive relations for linear spring and dashpot are written as: 

 then    EQ. 9.4.0.6 

   EQ. 9.4.0.7 

Combining EQ. 9.4.0.4, EQ. 9.4.0.6 and EQ. 9.4.0.7, an ordinary differential equation for stress is obtained: 

 or    EQ. 9.4.0.8 

 

where  is the relaxation time. A solution to the differential equation is given by the convolution integral: 

   EQ. 9.4.0.9 

where R(t) is the relaxation modulus. The last equation is valid for the special case of Maxwell one-dimensional 
model. It can be extended to the multi-axial case by: 

   EQ. 9.4.0.10 

where  are the relaxation moduli. The Maxwell model represents reasonably the material relaxation. But it is 

only accurate for secondary creep as the viscous strains after unloading are not taken into account. 
 
Another simple schematic model for viscoelastic materials is given by Kelvin-Voigt solid. The model is 
represented by a simple spring-dashpot system working in parallel as shown in Figure 9.4.2. 
 

Figure 9.4.2 Kelvin-Voigt model 
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The mathematical relation of Kelvin-Voigt solid is written as: 

   EQ. 9.4.0.11 

When  (no dashpot), the system is a linearly elastic system. When E=0 (no spring), the material behavior 

is expressed by Newton's equation for viscous fluids. In the above relation, a one-dimensional model is considered. 
For multiaxial situations, the equations can be generalized and rewritten in tensor form. 
 
The Maxwell and Kelvin-Voigt models are appropriate for ideal stress relaxation and creep behaviors. They are 
not adequate for most of physical materials. A generalization of these laws can be obtained by adding other springs 
to the initial models as shown in Figures 9.4.3 and 9.4.4. The equations related to the generalized Maxwell model 
are given as: 

   EQ. 9.4.0.12 

   EQ. 9.4.0.13 

   EQ. 9.4.0.14 

The mathematical relations which hold the generalized Kelvin-Voigt model are: 

   EQ. 9.4.0.15 

 

  
;  

  

;   

The combination of these equations enables to obtain the expression of stress and strain rates: 

   EQ. 9.4.0.16 

   EQ. 9.4.0.17 

   EQ. 9.4.0.18 

 
Figure 9.4.3 Generalized Maxwell model 
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Figure 9.4.4 Generalized Kelvin-Voigt model 

 
 
The models described above concern the viscoelastic materials. The plasticity can be introduced in the models by 
using a plastic spring. The plastic element is inactive when the stress is less than the yield value. The modified 
model is able to reproduce creep and plasticity behaviors. The viscoplasticity law (33) in RADIOSS will enable to 
implement very general constitutive laws useful for a large range of applications as low density closed cells 
polyurethane foam, honeycomb, impactors and impact limiters. 
 
The behavior of viscoelastic materials can be generalized to three dimensions by separating the stress and strain 
tensors into deviatoric and pressure components: 

   EQ. 9.4.0.19 

   EQ. 9.4.0.20 

where  and  are the stress and strain deviators. , (t) and (t) are respectively the dilatation and the 

shear and bulk relaxation moduli. 

9.4.1 Boltzmann Viscoelastic model (law 34) 
This law valid for solid elements can be used for viscoelastic materials like polymers, elastomers, glass and fluids. 
Elastic bulk behavior is assumed. Air pressure may be taken into account for closed cell foams: 

       EQ. 9.4.1.1 

with: 

 ;     EQ. 9.4.1.2 

and: 

       EQ. 9.4.1.3 

Where,  is the volumetric strain,  is the porosity, 
 
is the initial air pressure, 

 
is the initial volumetric 

strain and K is the bulk modulus. For deviatoric behavior, the generalized Maxwell model is used. The shear 
relaxation moduli in EQ. 9.4.0.19 is then defined as: 

      EQ. 9.4.1.4 

       EQ. 9.4.1.5 
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where  is the short time shear modulus,  is the long time shear modulus and  is the decay constant, 

defined as the inverse of relaxation time : 

 ; with      EQ. 9.4.1.6 

The coefficients , and 
 
are defined for the generalized Maxwell model as shown in Figure 9.4.5. 

 
Figure 9.4.5 Generalized Maxwell Model for Boltzmann law 

 
 

From EQ. 9.4.1.4, the value of  governs the transition from the initial modulus  to the final modulus . 

For t=0, we obtain  and when  then . For a linear response, we put . 

 

9.4.2 Generalized Kelvin-Voigt model (law 35) 
This law uses a generalized viscoelastic Kelvin-Voigt model whereas the viscosity is based on the Navier 
equations. The effect of the enclosed air is taken into account via a separate pressure versus compression function. 
For open cell foam, this function may be replaced by an equivalent "removed air pressure" function. The model 
takes into account the relaxation (zero strain rate), creep (zero stress rate), and unloading. It may be used for open 
cell foams, polymers, elastomers, seat cushions, dummy paddings, etc. In RADIOSS the law is compatible with 
shell and solid meshes. 
 
The simple schematic model in Figure 9.4.6 describes the generalized Kelvin-Voigt material model where a time-
dependent spring working in parallel with a Navier dashpot is put in series with a nonlinear rate-dependent spring. 

If  is the mean stress, the deviatoric stresses  at steps n and n+1 are computed by the expressions: 

    EQ. 9.4.2.1 

   EQ. 9.4.2.2 
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with: 

   EQ. 9.4.2.3 

   EQ. 9.4.2.4 

 

where  and  are defined as: 

      EQ. 9.4.2.5 

       EQ. 9.4.2.6 

In EQ. 9.4.2.5 the coefficients A and B are defined for Young's modulus updates ( ). 

 
Figure 9.4.6 Generalized Kelvin-Voigt model for RADIOSS law 35 

 
 
The expressions used by default to compute the pressure is: 
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where: 

       EQ. 9.4.2.8 

       EQ. 9.4.2.9 

       EQ. 9.4.2.10 

       EQ. 9.4.2.11 

( ) ij
t

ij
t

ijij e
GG

ts
GG

eGs
00

.2
2

ηη
+






 +−= ɺɺ ( )jifor ≠

( ) ii
t

ii
t

iiij e
GG

ts
GG

eGs
00

.

ηη
+






 +−= ɺɺ ( )jifor =

G tG

( ) ( )







+
+

+
=

v

BeA

v

E
MinG

12
,

12

ɺ

( )t

t
t v

E
G

+
=

12

21 EEE += εɺ

( )v

E
K

213 −
=

( )t

t
t v

E
K

213 −
=

kkP σ
3
1−=









=

0

ln
V

V
kkε



RADIOSS THEORY Version 2017  MATERIALS 
 

01-Jan-2017 59

 and 
 
are the Navier Stokes viscosity coefficients which can be compared to Lame constants in elasticity. 

 is called the volumetric coefficient of viscosity. For incompressible model,  and  

and . In EQ. 9.4.2.11, C1, C2 and C3 are Boolean multipliers used to define different responses. For 

example, C1=1, C2= C3=0 refers to a linear bulk model. Similarly, C1=C2=C3=1 corresponds to a visco-elastic bulk 
model.  

For polyurethane foams with closed cells, the skeletal spherical stresses may be increased by:  

 0

1air

P
P

γ
γ

⋅= −
+ − Φ

        EQ. 9.4.2.12 

where  is the volumetric strain,  the porosity, 
 
the initial air pressure. In RADIOSS, the pressure may also 

be computed with the P versus μ = ��
� − 1 , by a user-defined function. Air pressure may be assumed as an 

"equivalent air pressure" vs.  . You can define this function used for open cell foams or for closed cell by 

defining a model identical to material law FOAM_PLAS (33) (see following sections). 
 

9.4.3 Tabulated strain rate dependent law for viscoelastic 
materials (law 38) 
The law incorporated in RADIOSS can only be used with solid elements. It can be used to model: 

• polymers, 

• elastomers, 

• foam seat cushions, 

• dummy paddings, 

• hyperfoams, 

• hypoelastic materials. 

In compression, the nominal stress-strain curves for different strain rates are defined by you (Figure 9.4.7). Up to 
5 curves may be input. The curves represent nominal stresses versus engineering strains. 
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Figure 9.4.7 Nominal stress-strain curves defined by user input functions 

 

The first curve is considered to represent the static loading. All values of the strain rate lower than the assumed 
static curve are replaced by the strain rate of the static curve. It is reasonable to set the strain rate corresponding to 
the first curve equal to zero. For strain rates higher than the last curve, values of the last curve are used. For a given 

value of , two values of function at  for the two immediately lower  and higher  strain rates are read. 

The related stress is then computed as: 

     EQ. 9.4.3.1 

Parameters a and b define the shape of the interpolation functions. If a = b = 1, then the interpolation is linear. 

Figure 9.4.8 shows the influence of a and b parameters. 
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Figure 9.4.8 Influence of a and b parameters 

 

The coupling between the principal nominal stresses in tension is computed using anisotropic Poisson's Ratio: 

     EQ. 9.4.3.2 

Where, νt is the maximum Poisson's ratio in tension, νc being the maximum Poisson's ratio in compression, and 
Rν, the exponent for the Poisson's ratio computation (in compression, Poisson's ratio is always equal to νc ). 

In compression, material behavior is given by nominal stress vs nominal strain curves as defined by you for 
different strain rates. Up to 5 curves may be input. 

The algorithm of the formulation follows several steps: 

1. Compute principal nominal strains and strain rates. 

2. Find corresponding stress value from the curve network for each principal direction. 

3. Compute principal Cauchy stress. 

4. Compute global Cauchy stress. 

5. Compute instantaneous modulus, viscosity and stable time step. 

Stress, strain and strain rates must be positive in compression. Unloading may be either defined with an unloading 
curve, or else computed using the "static" curve, corresponding to the lowest strain rate (Figures 9.4.9 and 9.4.10). 

( ) ( )( )ijvctcij Rvvvv ε−−−+= exp1
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Figure 9.4.9 Unloading behavior (no unloading curve defined) 

 
 

Figure 9.4.10 Unloading behavior (unloading curve defined) 

 
 

It should be noted that for stability reasons, damping is applied to strain rates with a damping factor:  

      EQ. 9.4.3.3 

The stress recovery may be applied to the model in order to ensure that the stress tensor is equal to zero, in an 
undeformed state. 

An hysteresis decay may be applied when loading, unloading or in both phases by: 

      EQ. 9.4.3.4 

Where, H is the hysteresis coefficient, and  is the relaxation parameter. 

Confined air content may be taken into account, either by using a user-defined function, or using the following 
relation: 

       EQ. 9.4.3.5 

( )11 −− −+ nn
D

n R εεε ɺɺɺ

( )( )( )teH βεσσ −−⋅⋅= 1,1min

β









Φ−









−

=

0

0
0

1

V

V

V

V

PPair



RADIOSS THEORY Version 2017  MATERIALS 
 

01-Jan-2017 63

The relaxation may be applied to air pressure: . 

 

9.4.4 Generalized Maxwell-Kelvin model for viscoelastic materials 
(law 40) 
This law may only be applied to solid elements. 

Bulk behavior is assumed to be linear: 

       EQ. 9.4.4.1 

Shear behavior is computed using a shear factor as follows: 

      EQ. 9.4.4.2 

Figure 9.4.11 Maxwell-Kelvin Model 

 

iβ  are time decays, 
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β 1

i == with iτ being relaxation time. 

9.4.5 Visco-elasto-plastic materials for foams (law 33) 
This material law can be used to model low density closed cell polyurethane foams, impactors, impact limiters. It 
can only be used with solid elements. 

The main assumptions in this law are the following: 

• The components of the stress tensor are uncoupled until full volumetric compaction is achieved (Poisson's 
ration = 0.0). 

• The material has no directionality.  

• The effect of enclosed air is considered via a separate Pressure vs Volumetric Strain relation: 

      EQ. 9.4.5.1 

with:       EQ. 9.4.5.2 

Where,  is the volumetric strain,  is the porosity, 
 
is the initial air pressure, and 

 
is the initial 

volumetric strain. 
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• The skeletal stresses  before yield follow the Maxwell-Kelvin-Voight viscoelastic model (see 

Figure 9.4.12): 

Figure 9.4.12 Maxwell-Kelvin-Voight Model 

 

  EQ. 9.4.5.3 

• The Young's Modulus used in the calculation is:  

• Plasticity is defined by a user-defined curve vs volumetric strain, , or  

• Plasticity is applied to the principal skeletal stresses. 

• The full stress tensor is obtained by adding air pressure to the skeletal stresses: 

      EQ. 9.4.5.4 

 

9.4.6 Hyper visco-elastic law for foams (law 62) 
Experimental tests on foam specimens working in compression illustrate that the material behavior is highly 
nonlinear. The general behavior can be subdivided into three parts related to particular deformation modes of 
material cells. When the strain is small, the cells working in compression deform in membrane without causing 
buckling in its lateral thin-walls. In the second step, the lateral thin-walls of the cells buckle while the material 
undergoes large deformation. Finally, in the last step the cells are completely collapsed and the contact between 
the lateral thin-walled cells increases the global stiffness of the material. 

As the viscous behavior of foams is demonstrated by various tests, it is worthwhile to elaborate a material law 
including the viscous and hyper elasticity effects. This is developed in [101] where a decoupling between viscous 
and elastic parts is introduced by using finite transformations. Only the deviatoric part of the stress tensor is 
concerned by viscous effects. 

Material law 62 corresponds to a hyper-elastic solid material using the Ogden formulation for rubber material.  
The strain energy functional is given by [34]: 
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Where, C is the right Cauchy Green Tensor, FFC t=  with F the deformation gradient matrix, iλ  are the 
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Note that for rubber materials which are almost incompressible: the bulk modulus is very large compared to the 
shear modulus. 

The ground shear modulus is given by: 
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µµ           EQ. 9.4.6.2 

 

W can be written as: 

)()()( JUCWCW +=         EQ. 9.4.6.3 
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t
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C  is the deviatoric part of the right Cauchy Green Tensor 

U and W  are the volumetric and deviatoric parts of the stored energy functions and S0 the second Piola-
Kirchhoff stress tensor given by: 
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The Green-Lagrange strain tensor: 
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∂= 20  are the deviatoric and volumetric parts of the second Piola-Kirchhoff stress 

tensor S0. 

Rate effects are modeled through visco-elasticity using a convolution integral using Prony series. This corresponds 
to an extension of small strain theory or finite deformation to large strain. The rate effect is applied only to the 
deviatoric stress. The deviatoric stress is computed as: 
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G0 is the initial shear modulus; 0G  should be exactly the same as the ground shear modulus µ. ∞G  is the long-

term shear modulus that can be obtained from long-term material testing. iτ  are the relaxation times. 

The relation between the second Piola-Kirchhoff stress tensor voldev SSS 0+=  and Cauchy stress tensor σ is: 

tFSF
Fdet

1=σ          EQ. 9.4.6.8 

The reader is invited to consult references [101], [102], and [118] for more details. 

 

9.5 Materials for Hydrodynamic Analysis 

The following material laws are commonly used for fluid simulations:  

• Johnson-Cook model for strain rate and temperature dependence on yield stress (law 4), 

• Hydrodynamic viscous material for Newtonian or turbulent fluids (law 6), 

• Elasto-plastic hydrodynamic materials with von Mises isotropic hardening and polynomial pressure (law 
3), 

• Steinberg-Guinan elasto-plastic hydrodynamic law with thermal softening (law 49), 

• Boundary element materials (law 11), 

• Purely thermal materials (law 18) 

RADIOSS provides a material database incorporated in the installation. Many parameters are already defined by 
default and give accurate results. Some of them are described in the following sections: 

energy and pressure equations are solved simultaneously.  

9.5.1 Johnson Cook Law for Hydrodynamics (law 4) 
This law enables to model hydrodynamic behavior of an elastic-plastic material using Johnson-Cook Yield criteria 
and any equation of state available with /EOS card. It based on law3 (/MAT/LAW3) and adds strain rate and 
temperature dependency. The advantage of material law04 regarding classical law02 (/MAT/JCOOK) is that you 
can choose any available EOS from /EOS card. 

The equation describing yield stress (scale value) is:  

σ� = �A + B	ε��� �1 + C	ln ε#
ε�#
$ %1 − T∗()    EQ. 9.5.1.1 

where  

The pressure and energy values are obtained by solving equation of state P(µ,E) related to the material (/EOS). 
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Material parameters are the same as in law 3.  

The parameters are:  

C = Strain rate coefficient  

= Reference strain rate. 

m = Temperature exponent  

 
= Melting temperature  

 
= Maximum Temperature. For T >  : m=1 is used.  

 = specific heat per unit volume 

For an explanation about strain rate filtering, refer to Chapter 9.3.1.2. 

9.5.2 Hydrodynamic Viscous Fluid Law (law 6) 
This law is specifically designed to model liquids and gases.  

The equations used to describe the material are:  

       EQ. 9.5.2.1 

    EQ. 9.5.2.2 

Where, Sij is the deviatoric stress tensor,   is the kinematic viscosity,  and 
 
 is the deviatoric strain rate tensor.  

The kinematic viscosity  is related to the dynamic viscosity,  by:  

        EQ. 9.5.2.3 

9.5.2.1 Modeling a perfect gas  
To model a perfect gas, all coefficients C0, C1, C2, C3 must be set to equal zero. Also:  

       EQ. 9.5.2.4 

       EQ. 9.5.2.5 

A perfect gas allows compressibility and expansion and contraction with a rise in temperature. However, for many 
situations, especially very slow subsonic flows, an incompressible gas gives accurate and reliable results with less 
computation.  

9.5.2.2 Modeling an incompressible gas  
To model an incompressible gas, the coefficients should be set to:  

     EQ. 9.5.2.6 

       EQ. 9.5.2.7 

where, c is the speed of sound. 

Incompressibility is achieved via a penalty method. The sound speed is set to at least 10 times the maximum 
velocity.  
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This classical assumption is not valid when fluid and structures are coupled. In this case, set the sound speed in 
the fluid so that the first eigen frequency is at least 10 times higher in the fluid than in the structure.  

 

9.5.3 Elasto-plastic Hydrodynamic Material (law 3)  
This law is only used with solid brick and quadrilateral elements. It models the elastic and plastic regions, similar 
to law 2, with a non-linear behavior of pressure and without strain rate effect. The law is designed to simulate 
materials in compression.  

The stress - strain relationship for the material under tension is:  

       EQ. 9.5.3.1 

The pressure and energy values are obtained by solving equation of state P(µ,E) related to the material (see /EOS). 

Input requires Young's or the elastic modulus, E, and Poisson's ratio, . These quantities are used only for the 
deviatoric part. The plasticity material parameters are:  

A = Yield Stress  

B = Hardening Modulus 

n = Hardening Exponent  

= Maximum flow stress  

= Plastic strain at rupture 

A pressure cut off, pmin, can be given to limit the pressure in tension. The pressure cut off must be lower or equal 
to zero. Figure 9.5.1 shows a typical curve of the hydrodynamic pressure.  

Figure 9.5.1 Hydrodynamic Pressure Relationship  

 
 

 

  

( )n
pBA εσ +=

υ

maxσ

maxε



RADIOSS THEORY Version 2017  MATERIALS 
 

01-Jan-2017 69

9.5.4 Steinberg-Guinan material (law 49)  
This law defines as elastic-plastic material with thermal softening. When material approaches meting point, the 
yield strength and shear modulus reduces to zero. The melting energy is defined as: 

m c p mE E c Tρ= +    EQ. 9.5.4.1 

Where, cE  is cold compression energy and mT  melting temperature is supposed to be constant. If the internal 

energy E is less than mE , the shear modulus and the yield strength are defined by the following equations: 
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   EQ. 9.5.4.2 
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Where 1b , 2b , h and f  are the material parameters. 0σ ′  is given by a hardening rule: 

0 0 1
n

pσ σ βε′  = +     EQ. 9.5.4.4 

The value of 0σ ′  is limited by . 

The material pressure p is obtained by solving equation of state P(µ,E) related to the material (/EOS) as in law 3. 

9.6 Void Material (law 0)  
This material can be used to define elements to act as a void, or empty space. 

9.7 Failure model  
In addition to the possibility to define user’s material failure models, RADIOSS integrates several failure models. 
These models use generally a global notion of cumulative damage to compute failure. They are mostly independent 
to constitutive law and the hardening model and can be linked to several available material laws. A compatibility 
table is given in the RADIOSS Reference Guide. The following table gives a brief description of available models. 

 
Table 9.0.2  FAILURE MODEL DESCRIPTION 

Failure Model Type Description 

CHANG Chang-Chang model Failure criteria for composites 
CONNECT Failure Normal and Tangential failure 

model 
EMC Extended Mohr Coulomb failure 

model 
Failure dependent on effective 

plastic strain 
ENERGY Energy isotrop Specific energy 

FLD Forming limit diagram Introduction of the experimental 
failure data in the simulation  

HASHIN[128][129] Composite model Hashin model 
JOHNSON Ductile failure model Cumulative damage law based on 

the plastic strain accumulation 
LAD_DAMA Composite delamination Ladeveze delamination model 

NXT NXT failure criteria Similar to FLD, but 
based on stresses 

PUCK Composite model Puck model 
SNCONNECT Failure Failure criteria for plastic strain 

maxσ
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Failure Model Type Description 

SPALLING Ductile + Spalling Johnson Cook failure model with 
Spalling effect 

TAB1 Strain failure model Based on damage accumulation 
using user-defined functions 

TBUTCHER Failure due to fatigue Fracture appears when time 
integration of a stress expression 

becomes true 
TENSSTRAIN Traction Strain failure 
WIERZBICKI Ductile material 3-D failure model for solid and 

shells 
WILKINS Ductile Failure model Cumulative damage law 

 

9.7.1 Johnson-Cook failure model 
High-rate tests in both compression and tension using the Hopkinson bar generally demonstrate the stress-strain 
response is highly isotropic for a large scale of metallic materials. The Johnson-Cook model is very popular as it 
includes a simple form of the constitutive equations. In addition, it also has a cumulative damage law that can be 
accesses failure: 
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Where ε∆  is the increment of plastic strain during a loading increment, 
VM

m

σ
σσ =*

 the normalized mean stress 

and the parameters iD  the material constants. Failure is assumed to occur when d=1.  

9.7.2 Wilkins failure criteria 
An early continuum model for void nucleation is presented in [98]. The model proposes that the decohesion 

(failure) stress cσ  is a critical combination of the hydrostatic stress mσ  and the equivalent von Mises stress VMσ
: 

VMmc σσσ +=    EQ. 9.7.2.1 

In a similar approach, a failure criteria based on a cumulative equivalent plastic strain was proposed by Wilkins. 
Two weight functions are introduced to control the combination of damage due to the hydrostatic and deviatoric 
loading components. The failure is assumed when the cumulative reaches a critical value dc. The cumulative 
damage is obtained by: 
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where: 
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pε∆  is an increment of the equivalent plastic strain, 

W1 is the hydrostatic pressure weighting factor, 

W2 is the deviatoric weighting factor, 

si are the deviatoric principal stresses, 

a, α  and β  are the material constants. 

9.7.3 Tuler-Butcher failure criteria 
A solid may break owning to fatigue due to Tuler-Butcher criteria [99]: 

( ) dtd
t

r

λ
σσ∫ −=

0
   EQ. 9.7.3.1 

Where rσ  is the fracture stress,  is the maximum principal stress, λ  is material constant, t is the time when 

solid cracks and d is another material constant called damage integral.  

 

9.7.4 Forming Limit Diagram for failure (FLD) 
In this method the failure zone is defined in the plane of principal strains (Fig. 9.7.1). The method usable for shell 
elements allows introducing the experimental results in the simulation. 

 

 

9.7.5 Spalling with Johnson-Cook Failure model  
In this model, the Johnson-Cook failure model is combined to a Spalling model where we take into account the 
spall of the material when the pressure achieves a minimum value pmin. The deviatoric stresses are set to zero for 
compressive pressure. If the hydrostatic tension is computed, then the pressure is set to zero. The failure equations 
are the same as in Johnson-Cook model. 

 

σ

Figure 9.7.1 Generic forming limit diagram (FLD) 

 

Failure 
zone 
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9.7.6 Bao-Xue-Wierzbicki Failure model  

Bao-Xue-Wierzbicki model [115] represents a 3-D fracture criterion which can be expressed by the following 
equations: 

[ ]( ) mmnnnn
f

/1

minmaxmax 1 ξεεεε −−−=    EQ. 9.7.6.1 

ηε 2
1max

CeC −=  

ηε 4
3min

CeC −=  

Where 1C , 2C , 3C , 4C , γ  and m are the material constants, n  the hardening parameter and η  and ξ  are 

defined as following: 

• for solids: 
VM

m

σ
ση =  ;  3

3

2
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ξ =  

• for shells: 
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m

σ
ση =  ;  







 −−=
3
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2
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Where, mσ is the hydrostatic stress, VMσ is the von Mises stress, and  3213 sssJ =  are third invariant of 

principal deviatoric stresses. 
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Figure 9.7.2 Graphical representation of Bao-Xue-Wierzbicki failure criteria 

 

9.7.7 Strain Failure Model 
 This failure model can be compared to the damage model in law 27.  When the principal tension strain 1ε  reaches 

1tε , a damage factor D is applied to reduce the stress as shown in Fig. 9.7.3. The element is ruptured when D=1. 

In addition, the maximum strains 1tε  and 2tε  may depend on the strain rate by defining a scale function. 

 

Figure 9.7.3 Strain failure model 
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9.7.8 Specific Energy Failure Model 
When the energy per unit volume achieves the value 1E , then the damage factor D is introduced to reduce the 

stress. For the limit value 2E , the element is ruptured. In addition, the energy values 1E  and 2E  may depend on 

the strain rate by defining a scale function. 

Figure 9.7.4 Strain failure model 

 

 

9.7.9 XFEM Crack Initialization Failure Model 
This failure model is available for Shell only. 

The failure mode criteria are written as: 

For ductile materials, the cumulative damage parameter is: 

 

Where, 

σr  is the fracture stress 

σ  is the maximum principal stress 

λ  is the material constant 

t  is the time when shell cracks for initiation of a new crack within the structure 

D  is another material constant called damage integral 

For brittle materials, the damage parameter is: 

 

σr = σ0 (1 - D)b  


