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9.0 MATERIAL LAWS

A large variety of materials is used in the struateomponents and must be modeled in stress anghyblems.
For any kind of these materials a range of cortstédaws is available to describe by a mathemhtparoach
the behavior of the material. The choice of a dastste law for a given material depends at fistiesired quality
of the model. For example, for standard steelctestitutive law may take into account the plastj@nisotropic
hardening, the strain rate, and temperature depeedelowever, for a routine design maybe a sinipéat elastic
law without strain rate and temperature dependensefficient to obtain the needed quality of thedal. This is
the analyst design choice. On the other hand, aftevare must provide a large constitutive libraoyprovide
models for the more commonly encountered mateinghsactical applications.

RADIOSS material library contains several distimetterial laws. The constitutive laws may be usethbyanalyst
for general applications or a particular type odlggis. You can also program a new material laRADIOSS.
This is a powerful resource for the analyst to cad®mplex material model.

Theoretical aspects of the material models thatpaogided in RADIOSS are described in this chaplére
available material laws are classified in Table.B.0rhis classification is in complementary withoske of
RADIOSS input manual. The reader is invited to edinthat one for all technical information relates the
definition of input data.
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Table 9.0.1Material law description

Group Model description Law number in
RADIOSS (MID)
Elasto-plasticity Materials Johnson-Cook (2)
Zerilli-Armstrong (2)
von Mises isotropic hardening wit 3
polynomial pressure
Johnson-Cook (4)
Gray model (16)
Ductile damage for solids and (22)
shells
Ductile damage for solids (23)
Aluminum, glass, etc. (27)
Hill (32)
Tabulated piecewise linear (36)
Cowper-Symonds (44)
Zhao (48)
Steinberg-Guinan (49)
Ductile damage for porous (52)
materials, Gurson
Foam model (53)
3-Parameter Barlat (57)
Tabulated quadratic in strain rat€ (60)
Hansel model (63)
Ugine and ALZ approach (64)
Elastomer (65)
Visco-elastic (66)
Anisotropic Hill (72)
Thermal Hill Orthotropic (73)
Thermal Hill Orthotropic 3D (74)
Semi-analytical elasto-plastic (76)
Yoshida-Uemori (78)
Brittle Metal and Glass (79)
High strength steel (80)
Swift and Voce elastio-plastic (84)
Material
Barlat YLD2000 (87)
Hyper and Visco-elastic Closed cell, elasto-plastic foam (33)
Boltzman (34)
Generalized Kelvin-Voigt (35)
Tabulated law (38)
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Group Model description Law number in
RADIOSS (MID)
Generalized Maxwell-Kelvin (40)
Ogden-Mooney-Rivlin (42)
Hyper visco-elastic (62)
Tabulated input for Hyper-elastic (69)
Tabulated law - hyper visco-elastic (70)
Tabulated law - visco-elastic foam (77)
Ogden material (82)
Arruda-Boyce Hyperelastic (92)
Material
Composite and Fabric Tsai-Wu formula for solid (12)
Composite Solid (14)
Composite Shell Chang-Chang (15)
Fabric (19)
Composite Shell (25)
Fabric (58)
Concrete and Rock Drucker-Prager for rock or concrete (10)
by polynominal
Drucker-Prager for rock or concrete (21)
Reinforced concrete (24)
Driicker-Prager with cap (81)
Honeycomb Honeycomb (28)
Crushable foam (50)
Cosserat Medium (68)
Multi-Material, Fluid and Jones Wilkins Lee model (5)
Explosive Material Hydrodynamic viscous (6)
Hydrodynamic viscous with k- (6)
Boundary element (12)
Boundary element with k- (11)
ALE and Euler formulation (20)
Hydrodynamic bi-material liquid (37)
gas material
Lee-Tarver material (42)
Viscous fluid with LES subgrid (46)
scale viscosity
Solid, liquid, gas and explosives| (51)
Connections Materials Predit rivets (54)
Connection material (59)
Advanced connection material (83)
Other Materials Fictitious (0)
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Group Model description Law number in
RADIOSS (MID)
Hooke (1)
Purely thermal material (18)
SESAM tabular EOS, used with a (26)
Johnson-Cook yield criterion
Superelastic Law for Shape (71)
Memory Alloy
Porous material (75)
GAS material GAS (-)
User material (29~31)

9.1 I sotropic Elastic Material

Two kinds of isotropic elastic materials are copsidi:
» Hooke’s law for linear elastic materials,
* Ogden and Mooney-Rivlin laws for nonlinear elastiaterials.

These material laws are used to model purely elastiterials, or materials that remain in the etasthge. The
Hooke’s law requires only two values to be definéd Young's or elastic modulus E, and Poissotis, r& .
The law represents a linear relation between stredsstrain.

The Ogden’s law is applied to slightly compressilvlaterials as rubber or elastomer foams undergairyg
deformation with an elastic behavior [34]. The istranergy W is expressed in a general form as atifom of

W(A,1,,45)

Hp

a()\cl"p +Xgp +T;p _3)+§(J_1)2 EQ.9.1.0.1
p

W()\11)\21}\3):Z

whereA, , & principal stretch A, =1+ &, & being the principal engineering strainy, = A, [A, [A, | relative
1

- 13
volume:J = & )\i =J )\i is the deviatoric stretch, avnﬂp and ,up material constants.

Yo,

This law is very general due to the choice of do&fht &, and//, .

For an incompressible material, we have J=1. Fdoun dilatation:

A=A,=A=A EQ.9.1.0.2
The strain energy function can be decomposed iev@atbric and spherical parts:
W =W(A, Ay, A5) +UQJ) EQ.9.1.0.3
With:
— :up —

The stress corresponding to this strain energiwengoy:
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0 =—=7 EQ.9.1.0.4

o = Laﬂ = h < M% +67U£ EQ.9.1.0.5
'J N J([S0N; 0N, 0J oA,
| oA 2. % oA _1.-iA
Sinced —=J and—-==J 3 forisjand—> ==J 3—L fori#j, EQ. 9.1.0.5 is simplified to:
i oA 3 oA 3 A
f— \\/ 3 f— \\/
o =L 7W_ }z,‘ja___‘]a_u EQ.9.1.0.6
J\7ax (35770, T Al
For which the deviator of the Cauchy stress teresud,the pressure would be:
1[~0W 13+ W
== A—=-=> A — EQ.9.1.0.7
3 J('Mi 3;%4} °
13 ou
=== >0 =—— EQ.9.1.0.8
P="329% 7 g N

The only deviatoric stress above is retained, aagptessure is computed independently as follows:

p=K fu(3) (-1 EQ.9.1.0.9

where f,,,, a user-defined function related to the bulk modius

K= yEIM EQ. 9.1.0.10
J1-)
2, @,
ﬂ:pT EQ.9.1.0.11

M being the ground shear modulus, atid  the Poissatits

Note: For an incompressible material you ha¥/e™ 05 . Howe¥er 0495 s 4 good compromise to avoid
too small time steps in explicit codes.
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Mooney-Rivlin material law admits two basic assuions:
e The rubber is incompressible and isotropic in wised state,
* The strain energy expression depends on the imtargd Cauchy tensor.
The three invariants of the Cauchy-Green tensor are
_ 32 2 2
1 —/]1 +/]2 +/]3
— 3232 2,2 2,2
2 =AA T FAATHASA EQ.9.1.0.14
s =A2A,2A7 =1 for incompressible material
The Mooney-Rivlin law gives the closed expressibatmin energy as:
W =C, (I, -3)+C,(1,-3) EQ.9.1.0.15
with:
= 2 [ClO
M, =—2[C,, EQ.9.1.0.16
a, =2
a,=-2

The model can be generalized for a compressiblenmht

Viscous effects are modeled through the Maxwell ekod

—W\A/\/——
—MA/L{

Maxwell model

Where, the shear modulus of the hyper-elasticilasvexactly the long-term shear modulus G

_1

Ti are relaxation tImEST -

Rate effects are modeled through visco-elastigtggiconvolution integral using Prony series. This

corresponds to extension of small deformation thémfinite deformation.

This viscous stress is added to the elastic one.
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The visco-Kirchoff stress is given by:

_t_is d
o~ Ccc T
e’ = [dev(F F )}Js

TV:iGi

=1

ot—(

EQ. 9.1.0.17

1

Where, m is the order of the Maxwell model, F is tleformation gradient matrix,lE =J _éF and

dev(FFT) denotes the deviatoric part of tendoF ' .

The viscous-Cauchy stress is written as:

oV (1) = %rV(t)

9.2 Composite and Anisotropic Materials

The orthotropic materials can be classified inttofeing cases:

» Linear elastic orthotropic shells as fabric
* Nonlinear orthotropic pseudo-plastic solids as lyonenb materials
»  Elastic-plastic orthotropic shells

» Elastic-plastic orthotropic composites

EQ.9.1.0.18

The purpose of this section is to describe the ema#tical models related to composite and orthatropiterials.

9.2.1 Fabric law for elastic orthotropic shells (lavs 19 and 58)

Two elastic linear models and a nonlinear modedtaéri RADIOSS.

9.2.1.1 Fabiric linear law for elastic orthotropic $ells (law 19)

A material is orthotropic if its behavior is symmieal with respect to two orthogonal plans. Thei@akaw enables
to model this kind of behavior. This law is onlyadlable for shell elements and can be used to madelirbag
fabric. Many of the concepts for this law are thene as for law 14 which is appropriate for comgosdlids. If
axes 1 and 2 represent the orthotropy directitvesconstitutive matril is defined in terms of material properties:

Ell E22
Ell E22
cizlo o L o o
GlZ
o 0 0 = o
G23
o o o0 0 -
L G3l_

01-Jan-2017
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where the subscripts denote the orthotropy axeshésatrixC is symmetric:

U. V.
12 - 72 EQ.9.2.1.2

Ell E22

Therefore, six independent material propertiestaanput of the material:

E 11 = Young's modulus in direction 1
E 2 = Young's modulus in direction 2
U 1> = Poisson's ratio

G2, G23, G311 = Shear moduli for each direction
The coordinates of a global vectdf is used to define direction 1 of the local coortinsystem of orthotropy.

The angle® is the angle between the local directiffiber direction) and the projection of the @tbbectorv
as shown in Figure 9.2.1.

Figure 9.2.1Fiber Direction Orientation

The shell normal defines the positive direction fbr. Since fabrics have different compression anditen
behavior, an elastic modulus reduction factay, iR defined that changes the elastic propertiesoaipression.

The formulation for the fabric law has@;; reduction if g;; <0 as shown in Figure 9.2.2.

Figure 9.2.2Elastic Compression Modulus Reduction

011‘

R.E, €1
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9.2.1.2 Fabric nonlinear law for elastic anisotrops shells (law 58)

This law is used with RADIOSS standard shell eletsemd anisotropic layered property (type 16). fiber
directions (warp and weft) define the local axes asfisotropy. Material characteristics are deterchine
independently in these axes. Fibers are nonlirlaatie and follow the equation:

2
o, =E¢g; - (Bi;” ) E >0
Ly With 35 andi=1,2 EQ.9.2.1.3
o, =max, | E¢; —M g9 <0
i 2 de

The shear in fabric material is only supposed tfubetion of the angle between current fiber diiats (axes of
anisotropy):

r=G,tan@) -1, if a<sa; EQ.9.2.1.4
r=Gtan@)+G, -1, if a>a;
and

=(G. - - & - -
G, =(G,-G)tan(;), G 1+ tarf(a) with 7, =G, tan@,)

Where @; is a shear lock angl&r is a tangent shear modulus@, andGo is a shear modulus & = 0. If

Go = 0, the default value is calculated to avoid simeadulus discontinuity af¥; : Go = G.

Figure 9.2.4Elastic Compression Modulus Reduction

weft N p /' warp

a, is an initial angle between fibers defined in shell property (type 16).

The warp and weft fiber are coupled in tension andoupled in compression. But there is no discoittn
between tension and compression. In compression fdrér bending generates global stresses. Figuzes 9
illustrates the mechanical behavior of the struetur

01-Jan-2017 11
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Figure 9.2.5Local frame definition

LSS LTSS LSS SSST, r/////@///”////‘/%

WM/‘/I/M_P

Warp traction (free in weft direction)

Warp compression (no traction in weft)

CSLLSLLL  SSLSSLSS?,

A local micro model describes the material behagkagure 9.2.6). This model represents just ¥ wiap fiber
wave length and Y4 of the weft one. Each fiber scdbed as a nonlinear beam and the two fibers@meected
with a contacting spring. These local nonlinear aiquns are solved with Newton iterations at meméran
integration point.

Figure 9.2.6Local frame definition

Weft

Warg

Tractior Compressio
(fiber coupling) (no coupling)

9.2.2 Nonlinear pseudo-plastic orthotropic solidslgws 28, 50 and
68)

9.2.2.1 Conventional nonlinear pseudo-plastic orthiioopic solids (laws 28
and 50)

These laws are generally used to model honeycontbrialastructures as crushable foams. The micrascop
behavior of this kind of materials can be considess a system of three independent orthogonal gsprifhe
nonlinear behavior in orthogonal directions camtbe determined by experimental tests. The behavimes are
injected directly in the definition of law. There&p the physical behavior of the material can biobd by a
simple law. However, the microscopic elasto-plagt#havior of a material point cannot be represefgd
decoupled unidirectional curves. This is the mdj@awback of the constitutive laws based on thig@ggh. The
cell direction is defined for each element by aaldcame in the orthotropic solid property. If nooperty set is
given, the global frame is used.

01-Jan-2017 12
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Figure 9.2.7Local frame definition

i

The Hooke matrix defining the relation between dtress and strain tensors is diagonal, as there Roisson's
effect:

g, E. 0O 0 O O O|e&
,, 0 E, O 0 0 0 | &y
O | _ 0 0O E; O O O|é&; £Q.922.1
0, 0 0 0 G, O 0 | &, T
O, 0 0 0 0 G,; 0 &y,

10, | O 0 0 0 0 Gy &,

An isotropic material may be obtained if:
E,=E,=Ej;andG,=G,=G;, = i EQ.9.2.2.2

2

Plasticity may be defined by a volumic strain saist dependent yield curve (Figure 9.2.8). The frypeld stress
function is always positive. If the material undeeg plastic deformation, its behavior is alwaybatropic, as all
curves are independent to each other.

Figure 9.2.8Honeycomb typical constitutive curve

A

O

user defined
yield curve ij

|

B
_—

u [L_?‘ I)ors‘-j

The failure plastic strain may be input for eactedlion. If the failure plastic strain is reachedone direction,
the element is deleted. The material law may irelsidain rate effects (law 50) or may not (law 28).

01-Jan-2017 13
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9.2.2.2 Cosserat medium for nonlinear pseudo-plastorthotropic solids
(law 68)

Conventional continuum mechanics approaches caimuatrporate any material component length scale.
However, a number of important length scales asgyrparticles, fibers, and cellular structures ninstaken into
account in a realistic model of some kinds of mater To this end, the study of a microstructurearial having
translational and rotational degrees-of-freedorurigerlying. The idea of introducing couple stresseshe
continuum modelling of solids is known as Coss#rabry which returns back to the works of brotHeosserat

in the beginning of 2D century [110]. A recent renewal of Cosserat meidsais presented in several works of
Forest et al [111], [112], [113], and [114]. A sheammary of these publications is presented mghction.

Cosserat effects can arise only if the materiauigiected to non-homogeneous straining conditidnSosserat
medium is a continuous collection of particles thahave like rigid bodies. It is assumed that thadfer of the
interaction between two volume elements throughaserelement dS occurs not only by means of aidraeind
shear forces, but also by moment vector as showigimre 9.2.9.

Figure 9.2.9Equilibrium of Cosserat volume element

M,
FETIAN
22 O, A
P 2
= +
Hay [ L’ 1
O,
L 0y, Mz

Surface forces and couples are then representétebyenerally non-symmetrical force-stress and lessipess
tensorsg;; and £ (units MPA and MPa-m):

ti :a’ij nj ;om :luijnj EQ.9.2.2.3
The force and couple stress tensors must satisfgdhilibrium of momentums:

O,; t fi = A,

Ui —Ew0y TG =1gq EQ.9.2.2.4

Where, f; are the volume force€; volume couplesp mass density, the isotropic rotational inertia anj,
the signature of the perturbation (i,k,I).

In the often used couple-stress, the Cosserat mitation is constrained to follow the materialatiddn given by
the skew-symmetric part of the deformation gradient

1
@ = _E iikUj k EQ.9.2.2.5

The associated torsion-curvature and couple steessrs are then traceless. If a Timoshenko beasgésded as
a one-dimensional Cosserat medium, constraint EQ29 is then the counterpart of the Euler-Berloul
conditions.

01-Jan-2017 14
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The resolution of the previous boundary value gobtequires constitutive relations linking the defation and
torsion-curvature tensors to the force- and cogplesses. In the case of linear isotropic elagtieie have:

0; =89 + ZAIQ?’““““' + 2,ucqj9‘9”9/mm-

Ui = akyo; + Zﬁ/ﬂ?,m' + ZVKijgma,mm

EQ.9.2.2.6

Where q? ' and q?kewa'm

deformation tensor. Four additional elasticity miodppear in addition to the classical Lamé cortstan

are respectively the symmetric and skew-symmepaet of the Cosserat

Cosserat elastoplasticity theory is also well-dighbd. von Mises classical plasticity can be edézhto
micropolar continua in a straightforward mannere Ffeld criterion depends on both force- and cowspiesses:

3
f(aiﬂ):\/z(aﬁﬁj +a,5;S; b 1 +b2:uij:uji)_ R EQ.9.2.2.7

Where,s denotes the stress deviator @&)chndb; are the material constants.

Cosserat continuum theory can be applied to sewdgiabes of materials with microstructures as hooenps,
liquid crystals, rocks and granular media, cellglalids and dislocated crystals.

9.2.3 Hill's Law for Orthotropic Plastic Shells

Hill's law models an anisotropic yield behaviorcén be considered as a generalization of von Miséd criteria
for anisotropic yield behavior. The yield surfaedided by Hill can be written in a general form:

Flo,-0,.) +Glo,-0,,f +H(o,,—0,,) +2Lo% +2M02 +2No2%,-1=0 EQ.9.2.3.1

Where, the coefficients F, G, H, L, M and N aredhastants obtained by the material tests in diffeorientations.
The stress components; are expressed in the Gerteference parallel to the three planes of amipgpt
EQ.9.2.3.1 is equivalent to von Mises yield cradfithe material is isotropic.

In a general case, the loading direction is nobttieotropic direction. In addition, we are conaawith the plane
stress assumption for shell structures. In planao#ropy, the anisotropy is characterized by dé#fe strengths
in different directions in the plane of the sh@édte plane stress assumption will enable to simify. 9.2.3.1,

and write the expression of equivalent streRg as:

— 2 2 2
Og = \/Aiall + A0, —AO,0,,+ A0, EQ.9.23.2

The coefficientsAA are determined using Lankfordiisetropy parameter,

R= loo T 2r45 +1y : H = i : Ai =H 1+i EQ. 9.2.3.3
4 1+R l'oo
A = H[1+i} A =2H; AZ:ZH(r45+0.5)[i +iJ
oo foo oo

01-Jan-2017 15



RADIOSS THEORY Version 2017 MATERIALS

Where the Lankford’s anisotropy parametéys arerdehed by performing a simple tension test ateuy!
to orthotropic direction 1:

de

Ui
a+s
2

. H +(2N - F -G -4H)Sn’a Cos’a
T dg,, F Sn’a +G Cos’a

EQ.9.2.34
The equivalent stresg,,  is compared to the yietsstw, which varies in function of plastic straiy  d &me
strain rate€ (law 32):

o,=alg, +e,) . maxe,e,)" EQ.9.2.35

Therefore, the elastic limit is obtained by:
g, =alg) (&)" EQ.9.2.3.6

The yield stress variation is shown in Figure 902.1

Figure 9.2.10Yield stress variation

The strain rates are defined at integration poifite maximum value is taken into account:

9 maf 96 98 54 () £0.9237
dt dt " dt " dt' Y

In RADIOSS, it is also possible to introduce thelgistress variation by a user-defined functiow @3). Then,
several curves are defined to take into accounstitaén rate effect.

It should be noted that as Hill's law is an ortlogic law, it must be used for elements with ortbpyr properties
as Type 9 and Type 10 in RADIOSS.

9.2.3.1 Anistropic Hill Material Law with MMC Fract ure Model
(Law 72)

This material law uses an anistropic Hill yield étion along with an associated flow rule. A simigletropic
hardening model is used coupled with a modifiechMeoacture criteria. The yield condition is writtas

¢o,0,)=0y,~0,=0
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Where, 0., is the Equivalent Hill stress given as:

¢ For 3D model (Solid)
Oy = \/F(ayy ~0,f+Glo, -0, ) +H(o, -0, f +2L0% +2Ma2 +2Nd?,

. For Shell

Oy = \/FJWZ +Go,’+H (JXX - JW)Z +2No?2,
Where, F, G, H, N, M, andL are Six Hill anisotropic parameters.
For the yield surface a modified swift law is emydd to describe the isotropic hardening in theiapfbn of

the plasticity models

_ 0f~0 n
gy = ay(gp +£p)

0. ) 0
with 9y is the itial yield stress €y is the initial equivalent plastic strai £p is the equivalent plastic strain
and n is a material constant.

Modified Mohr fracture criteria :
A damage accumulation is computed as:

? de
D=[—F
G
Where, &; is a plastic strain fracture for the modified Mditacture criteria is given by :

e Anisotropic 3D model
1

oy J3 +c? g 1 _gr\]| "
£ = C_Z{C3+2——\/§(1_C3)(SGC%T)_ ﬂ{ +T cos{g }C1(17+—3 sm(g ))}

with:

6= 1—E arccos
Vid

27 1,
2 a3,
1
— §(a-xx +0—yy +UZZ)
UVM

f:

Where,Ja is the third invariant of the deviatoric stress.
e 2D Anisotropic Model

L
o’ 2 :
fe, b {\/1+3c1 fl}rcl(mf_azj
2
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f,=co }arcsi —2—7/7(/72——1j
! 3 2

f, =sin Earcsi —2—7/7[/72——1
2 3 2 3

f, :CS+2_L?\’/§(1—CB)[%— j

Where, Cy, C, andC, areparameters for MMC fracture model.

With:

The fracture initiates when D = 1.

In order to represent realistic process of an elemesuftaning functior 8 is introduced to
reduce the deformation resistance. The yield surfacedfied as:

— o0 n
gy —,de(é‘p +‘9p)

with ﬁ:{%_tl)j

Where, Dc i<ritical damage

We have crack propagation wh1< D < D, in this cast0<f3<1is considered to reduce the
yield surface otherwise tf 5 =1.

The element is deleted D = D,

9.2.4 Elastic-Plastic Orthotropic Composite Shells
Two kinds of composite shells may be consideratiénmodeling:

» Composite shells with isotropic layers

» Composite shells with at least one orthotropic laye

The first case can be modeled by an isotropic nzdtehere the composite property is defined in eatproperty
definition as explained in Chapter 5. However hia tase of composite shell with orthotropic laykeesdefinition
of a convenient material law is needed. Two deditahaterial laws for composite orthotropic shekstin

RADIOSS:

» Material law COMPSH (25) with orthotropic elasticitwo plasticity models and brittle tensile faiur
» Material law CHANG (15) with orthotropic elasticjtiully coupled plasticity and failure models.

These laws are described here. The descriptiolastie plastic orthotropic composite laws for selid presented
in the next section.

9.2.4.1 Tensile behavior

The tensile behavior is shown in Figure 9.2.12. Bhbavior starts with an elastic phase. Then, eshtb the
yield state, the material may undergo an elastistid work hardening with anisotropic Tsai-Wu yieliteria. It

is possible to take into account the material den@be failure can occur in the elastic stage ter @lastification.

It is started by a damage phase then conductetiebfotmation of a crack. The maximum damage faaitr
allow these two phases to separate. The unloadingiappen during the elastic, elastic-plastic onatge phase.
The damage factat varies during deformation as in the case of igitranaterial laws (law 27). However, three
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damage factors are computed; two damage fadprs d dgnfor orthotropy directions and the othey, for
delamination:

O = E11(1_ d1)511
0,,=E,(1-d,)s,, EQ.9.24.1

O, = GlZ(l_ dl)(l_ d, )Vlz
Figure 9.2.11 Shear strain

Y v
A

A

Distorsion

where d1 and d2 are the tensile damages factors. The damabpfidure behavior is defined by introduction of
the following input parameters:

&,,= Tensile failure strain in direction 1
&1 = Maximum strain in direction 1
&,,= Tensile failure strain in direction 2
&, = Maximum strain in direction 2

d,.«= Maximum damage (residual stiffness after failure)
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Figure 9.2.12Tensile behavior of composite shells
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iciisile failure tcnsiie failurc
9.2.4.2 Delamination
The delamination equations are:
0,,=G,,(1-d,)y,, EQ.9.2.4.2
EQ. 9.2.4.3

Oy = Gz3(1_ ds)yz3
where d, is the delamination damage factor. The damage gunliaw is linear with respect to the shear strain

Let y= V321 + )55 then:
for d;=0 = y=W,
for  d;=1 = V=V

EQ.9.2.4.4

9.2.4.3 Plastic behavior

The plasticity model is based on the Tsai-Wu doterwhich enable to model the yield and failuregds. The

criteria are given by [57]:

F(a) =F0,+F,0, +F, 07 +F,02 +F,0% +2F,0,0, EQ.9.2.45
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Where Fl:—ic+it : F,=- ]; +_]t‘
Uly aly JZy 02y
1 1
Fu=—F7% Fpo=——+
Ulyaly UZyUZy
1 a
F,=—: F,=- F.F

44 szy O-Jt.Zy 12 11522

Where, @ is the reduction factor. The six other peaters are the yield stresses in tension and casiprefor
the orthotropy directions which can be obtainedhyiail loading tests:

let = Tension in direction 1 of orthotropy
Jzyt: Tension in direction 2 of orthotropy
lec = Compression in direction 1 of orthotropy
Jzyc = Compression in direction 2 of orthotropy

Ulzycz Compression in direction 12 of orthotropy

leyt = Tension in direction 12 of orthotropy

The Tsai-Wu criteria are used to determine the nizdtieehavior:

- F (0) <1 : elastic state
- F (0) =1 : plastic admissible state EQ.9.2.4.6
- F (0) >1 : plastically inadmissible stresses

For F (0 ) =1 the cross-sections of Tsai-Wu function with thenpfaof stresses in orthotropic directions is shown
in Figure 9.2.13.
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Figure 9.2.13Cross-sections of Tsai-Wu yield surface 5(0) =1

v

al 2

If F (0) >1, the stresses must be projected on the yielfhse to satisfy the flow ruleF (0) is compared to a

maximum valueF (\Np) varying in function of the plastiork Wp during work hardening phase:

F(o)=FW,)=1+bw" EQ.9.2.4.7

Where,b is the hardening parameter amis the hardening exponent.
Therefore, the plasticity hardening is isotropidllastrated in Figure 9.2.14.
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Figure 9.2.14lsotropic plasticity hardening

F=1+ wwp"
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=1 + th“

9.2.4.4 Failure behavior

The Tsai-Wu flow surface is also used to estimlagenbaterial rupture by means of two variables:

« plastic work IimitWF:nax ,

« maximum value of yield functiorF___ .

If one of the two conditions is satisfied, the nnitleis ruptured. The evolution of yield surfaceidg work

hardening of the material is shown in Figure 9.2.15

01-Jan-2017

Figure 9.2.15Evolution of Tsai-Wu yield surface
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The model will allow the simulation of the brittlailure by formation of cracks. The cracks canesithe oriented
parallel or perpendicular to the orthotropic refexe frame (or fiber direction), as shown in Figar2.16. For

plastic failure, if the plastic workV,, s larger théhe maximum vaIuéNPmax for a given element, then the

element is considered to be ruptured. However fowlti-layer shell, several criteria may be coasid to model
a total failure. The failure may happen:

< IFW, >WF,maX for one layer,

o If W, >W,™ for all layers,

o If W, >W,™ or tensile failure in direction 1 for each laye

< IFW, >WF,maX or tensile failure in direction 2 for each laye

o If W, >W,™ or tensile failure in directions 1 and 2 forcedayer,
< IFW, >WF,maX or tensile failure in direction 1 for all lay®r

< IFW, >meax or tensile failure in direction 2 for all lay®r

< IFW, >WF,maX or tensile failure in directions 1 and 2 forchdayer.

The last two cases are the most physical behavatghe use of failure criteria depends, at fitsthe analyst's
choice. In RADIOSS the flag#r defines the used failure criteria in the compofati

Figure 9.2.16Crack orientation

crack dir. 1 7301( dir. 2

=

¢ & &

In practice, the use of brittle failure model alkw estimate correctly the physical behavior lafrge rang of
composites. But on the other hand, some numergzdllations may be generated due to the high siitygibf
the model. In this case, the introduction of aifiaidl material viscosity is recommended to stidgilresults. In
addition, in brittle failure model, only tensionesises are considered in cracking procedure.

The ductile failure model allows plasticity to absenergy during a large deformation phase. Thezetbe
model is numerically more stable. This is represéfty CRASURV model in RADIOSS. The model makes
also possible to take into account the failuresimston, compression and shear directions as desdritthe
following.

9.2.4.5 Strain rate effect

The strain rate is taken into account within thedification of EQ. 9.2.4.7 which acts through a sdaictor:

WARE :
F (W,.¢) = 1+b[wr'; ] E(1+c |n(éj} EQ.9.2.4.8
p
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Where,

W,  :plastic work

Wpref : reference plastic work

b : plastic hardening parameter
n : plastic hardening exponent
c : strain rate coefficient (equal to zero foristédading).

The last equation implies the growing of the Tsai-Vield surface when the dynamic effects are irgirep The
effects of strain rate are illustrated in Figur2. 97.

Figure 9.2.17Strain rate effect in work hardening

F %2 A éi
W1
/-/_— . i‘,l
Wi
/ £o
1
Wp £

9.2.4.6 CRASURYV model

The CRASURYV model is an improved version of therfer law based on the standard Tsai-Wu criteria.riamm
changes concern the expression of the yield sufefere plastification and during work hardeningst in
CRASURYV model the coefficientslrin EQ. 9.2.4.5 depends only on one input parameter

£ o 1
44 (ley jz

Another modification concerns the parametgrsnFEQ. 9.2.4.5 which are expressed now in functbplastic
work and plastic work rate as in EQ. 9.2.4.8:

Fw,)=1= R, Jo, + F,W, Jo, + F (W, o7 + Fo,lW, Jo? + FuuW, Jor, + 27w, Joro,
o5, = ot (vv;°)”{1+ can[fD
o8, = 020@+ g ) I1+ cLn [EiB
o, = 0;0@+ B! (w )"{1+ ql_n( ; j EQ.9.2.4.10
ai, = 020(1+ ot (w2 ) (1+ chn[ D
Ty, = 0120(1+ b, W) {1+ clan[giB

EQ. 9.2.4.9
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where the five sets of coefficienttsn andc should be obtained by experience. The work handgeisi shown in
Figure 9.2.18.

Figure 9.2.18CRASURYV plasticity hardening

9]
S o1

oyo /———62

The CRASURYV model will allow the simulation of tdectile failure of orthotropic shells. The plastied failure
behaviors are different in tension and in compssThe stress softening may also be introducélgenmodel to
take into account the residual Tsai-Wu stresses.elblution of CRASURY criteria with hardening asuftening
works is illustrated in Figure 9.2.19.

Figure 9.2.19 Flow surface in CRASURV model

W Wi w,

2 : Tsai-Wu after hardening 1 : Tsai-Wh after hardening
and softening in some directions o
I 3

0 : Initial :Msw N

3 : Residual Tsai-Wa
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9.2.4.7 Chang-Chang model

Chang-Chang law [58], [59] incorporated in RADIOBS combination of the standard Tsai-Wu elastas{it
law and a modified Chang-Chang failure criteria][@e affects of damage are taken into accoumtdzyeasing
stress components using a relaxation techniquediol mumerical instabilities.

Six material parameters are used in the failurterdai:

S, = Longitudinal tensile strength

Sz = Transverse tensile strength

S/, = Shear strength

Cl = Longitudinal compressive strength
C2 = Transverse compressive strength
[ = Shear scaling factor.

Where,1 is the fiber direction.

The failure criterion for fiber breakage is writtas:

+ Tensile fiber modeo,; >0

2 2 > .
=% 1p%2| 10 =0 failed  EQ.9.24.11
S S, <0 elastic— plastic

« Compressive fiber modey,; <0

’ >0 failed
=21 —10 =0 e . EQ.9.2.4.12
C, <0 elastic— plastic

For matrix cracking, the failure criterion is:

+ Tensile matrix modeo,, >0

? ? >0 failed
e = 92 + [ 92| _19 =0 _ . EQ.9.24.13
S S, <0 édastic - plastic

«  Compressive matrix mode7,, <0

o,V (e, Y o, (a,) >0 failed
eczi - 22 | 4 2 —-1|=22 4+ 222 | 10 ) . EQ.9.24.14
2S, 2S, C, \|S, <0 elastic- plastic

If the damage parameter is equal to or greater1t@rthe stresses are decreased by using an exjabrienction
to avoid numerical instabilities. A relaxation tedue is used by gradually decreasing the stress:

[o(t)] = £ (t)Clo, )] EQ.9.2.4.15
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With: f(t) eXF{ t trj and t= tr where:
T
t isthe time

t. = is the start time of relaxation when the damageréa are assumed
T = jsthe time of dynamic relaxation

g
[Ud (tr)] is the stress components at the beginning of dar{fag matrix cracking{ad ('[r )] = [ dZZJ )
d12

9.2.5 Elastic-Plastic Orthotropic Composite Solids

The material law COMPSO (14) in RADIOSS allows itmdate orthotropic elasticity, Tsai-Wu plasticityth
damage, brittle rupture and strain rate effectg ddnstitutive law applies to only one layer of lam Therefore,
each layer needs to be modeled by a solid mesaye is characterized by one direction of the fillematerial.
The overall behavior is assumed to be elasto-plasthotropic.

Direction 1 is the fiber direction, defined withspect to the local reference frar(l@,é,f) as shown inrEig
9.2.20.

Figure 9.2.20 Local reference frame

57 .
5 8 2
7 62
: > T \
Y (L S S O
-"i
: A

For the case of unidirectional orthotropy (iE,; = E,, dd8,;, =G,,) the material law (53) in RADIOSS
allows to simulate an orthotropic elastic-plasghavior by using a modified Tsai-Wu criteria.

9.2.5.1 Linear elasticity

When the lamina has a purely linear elastic belathe stress calculation algorithm is as follows:

1. Transform the lamina streszs‘.j (t) , and strain dgtefrom global reference frame to fiber reference eam
2. Compute lamina stress at tinfier At by explicit time integration:

o, (t+A4t)= o, (t)+ Dy, dy At EQ.9.25.1
3. Transform the lamina stressgy (t + At) , back to globiaremce frame.

The elastic constitutive matri€ of the lamina relates the non-null componentshef dtress tensor to those of
strain tensor:

{0} =[Dfe} EQ.9.2.5.2
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The inverse relation is generally developed in tefirthe local material axes and nine independeastiel
constants:

[N
<
N
[
<
w
(=

= -2z _Z3 9 0 0
Ell E22 E33
11 E22 E33 all
‘922 1 022
—_— 0 0 0
fas| _ Eas T3s EQ.9.2.5.3
yl2 1 O O 012
Va3 2G, Oy
Var Symm. 5 é 0 |a
23
1
L 2G;, |

where E; are the Young's modulu§; shear modulus antf; Poisson’s ratios; is the strain components
due to the distortion.

Figure 9.2.21 Strain components and distortion
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9.2.5.2 Orthotropic plasticity

Lamina yield surface defined by Tsai-Wu yield aidds used for each layer:

_ _ 2 2 2 2 2 2
F=f (\Np) = ko, + F,0, + Fo,+ F07 + Fy,0; + Fo0s + Fu 07, + Fo0,3 + Fe03

+ 2F,0,0,+2F,,0,0,+2F .00, EQ.9.25.4
with:
1 .

F;, = —+—  (=12,3);

iy iy

1 1 1
F. F. Fir =

1 ofyoty 22 05y0%y 33 05y0sy’
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1 1 1
= T Fss = —— Fee =
012y012y 023y023y

1 1
F, = _E\/ (F11F22) ; Fos = _E Fs

where J; is the yield stress in directignc andt denote respectively for compression and tensf({Wp)

F4-4-

c _t
031y031y

represents the yield envelope evolution during watdening with respect to strain rate effects:

tw,)=0+8 wv;{u c.|n(iD

&o

EQ.9.25.5

whereWp is the plastic worB the hardening parametarthe hardening exponent aadtrain rate coefficient.

f (\Np) is limited by a maximum valud

2
TE f(—j

EQ. 9.2.5.6

gy

If the maximum value is reached the material ikthi
In EQ. 9.2.5.5, the strain rate effects on the eti@h of yield envelope. However, it is also potsito take into

account the strain raté  effects on the maximuessw, ., as shown in Figure 9.2.22.

Figure 9.2.22 Strain rate dependency

(a) Strain rate effect oo, (b) No strain rate effect oa,,,
(8} c
A A £> é.o €< éo
Omax |eeeceeeemen-... = £>¢
Omax0 |- P s 1<—:-0 Omaxt - -
al. al.
A | y >
€max >8 €max €
£ £
o= ay(1+ c.Inf—B azay[h c.Inf—B
& o
&
— 40 — 0
Omax = a—max(l-'- C. In(_Jj Omax = T max
EO
2
max
O'y
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9.2.5.3 Unidirectional Orthotropy
Law (53) in RADIOSS provides a simple model for diréctional orthotropic solids with plasticity. The
unidirectional orthotropy condition implies:

By = Ey EQ.9.2.5.7

GSl = GlZ
The orthotropic plasticity behavior is modeled byadified Tsai-Wu criterion (EQ. 9.2.5.4) in which:
2 1 F+F,

F,= — (P +Fy+Fy )+
12 W 2 11 22 44 0_45y

where 0453 is yield stress in 45° unidirectional test. Theldistresses in direction 11, 22, 12, 13 and 45° are
defined by independent curves obtained by unidoeat tests (Figure 9.2.23). The curves give thesstvariation

in function of a so-called straig,

EQ.9.2.5.8

g, =1-exp(Tracele]) EQ.9.2.5.9

Figure 9.2.23Yield stress curve for a unidirectional orthotromaterial

A

User defined
Yield curve ij

/

Traction Compression

g, =1-exp(Tr a(;e[e])

9.2.6 Elastic-plastic anisotropic shells (Barlat’saw)

Barlat's 3- parameter plasticity model is developeflL00] for modelling of sheet under plane strassumption
with an anisotropic plasticity model. The anisotoogield stress criterion for plane stress is defils:

F=alK, +K,|" +aK, - K,|" +d2K,|" - 2(a,)" EQ. 9.2.6.1
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where g, is the yield stress andc are anisotropic material constantsBarlat's exponent and; and K, are
defined by:

o,—ho,
K, == W EQ.9.2.6.2
2
_ |l 9% _haw ’ 2 2
K2 - 2 + p (O-XY)

whereh andp are additional anisotropic material constants.afisotropic material constants, exceptdaevhich
is obtained implicitly, are determined from Banhatth to thickness strain ratR from:

a=2—2JﬂjﬁLJﬂjﬁLj EQ.9.2.6.3
1+ Ryo N1+ Ry,

c=2-a

g6

The width to thickness ratio for any angge can be calculated according to [100] by:

R¢ - 2m(ae) -1
oF N oF

do, 00,

EQ. 9.2.6.4

where J, is the uniaxial tension in th@ direction. Let¢p =45° EQ. 9.2.6.4 gives an equation from whiah th
anisotropy parametgrcan be computed implicitly by using an iterativeqedure:

2m(o.)"

[OF oF
[ T

do, 00,

-1-R,=0 EQ.9.265
j45

It is worthwhile to note that Barlat’s law redudedHill’s law when using m=2.

9.3 Elasto-Plasticity of | sotropic Materials

The strain hardening behavior of materials is aomfgjctor in structural response as metal workirgcesses or
plastic instability problems. A proper descriptifrstrain hardening at large plastic strains isegalty imperative.
For many plasticity problems, the hardening behaoidhe material is simply characterized by thaiststress
curve of the material. For the proportional loadihig is generally true. However, if the loadingtps combined,
the characterization by a simple strain-stressecigwno longer adequate.

The incremental plasticity theory is generally usedomputational methods. Plasticity models ari¢ter as rate-
dependent or independent. A rate-dependent modebige in which the strain rate does affect thestitnive
law. This is true for a large range of metals &t temperature relative to their melting temperature
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Most isotropic elastic-plastic material laws in REESS use von Mises yield criteria as given in sgcf.7.2.
Several kinds of models are integrated. The mddelslve damage for ductile or brittle failures wibh without
dislocation. The cumulative damage law can be tsadcess failure. The next few paragraphs destirdmetical
bases of the integrated models.

9.3.1 Johnson-Cook plasticity model (law 2)

In this law the material behaves as linear elagtien the equivalent stress is lower than the ya#kess. For higher
value of stress, the material behavior is pladtids law is valid for brick, shell, truss and beataments. The
relation between describing stress during plagfornation is given in a closed form:

a:(a+b£pj[1+ clnij(l—Tij EQ.9.3.1.1
‘90
where:
O = Flow stress (Elastic + Plastic Components)
&, = Plastic Strain (True strain)
a = Yield Stress
b = Hardening Modulus

n = Hardening Exponent

¢ = Strain Rate Coefficient
£ = Strain Rate
&, = Reference Strain Rate
m = Temperature exponent
T0= T-298

T —298

T, is the melting temperature in Kelvin degrees. Thélsatic conditions are assumed for temperature
computation:

E
T=T+——F—"— EQ.9.3.1.2
oC,(Volume)
Where,pC, is the specific heat per unit of volumd, is thitial temperature (in degrees Kelvin), abg, is

the internal energy.

Two optional additional inputs are:

g,

maxo = Maximum flow stress

Enax— Plastic strain at rupture

Figure 9.3.1 shows a typical stress-strain curviaénplastic region. When the maximum stress ishred during
computation, the stress remains constant and rahterdergoes deformation until the maximum plastiain.

Element rupture occurs if the plastic strain igdarthan&, . If the element is a shell, the ruptwelsinent is

deleted. If the element is a solid element, theungal element has its deviatoric stress tensor geemtly set to
zero, but the element is not deleted. Therefoeephterial rupture is modeled without any damatgcef
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Figure 9.3.1Stress - Plastic Strain Curve
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n
c = (a+bep)

max p

Chard in this material law is same like in /MAT/LAM. More detail for Chard see 9.3.3.

9.3.1.1 Strain rate definition

Regarding to the plastification method used, thairstrate expression is different. If the progresgilastification
method is used (i.e. integration points throughtkiiekness for thin-walled structured), the stnaite is:

E:ma dgxﬂzg(s ) EQ.9.3.1.3
dt dt ' dt " dt
1

Ey = nyy EQ.9.3.14
With global plastification method, we have:

de _ (dE /dtj

— = EQ.9.3.15

dt O

where Ej is the internal energy.
For solid elements, the maximum value of the straia components is used:

e=maxe, &, &, 2é,, 26, 2¢,) EQ.93.16

9.3.1.2 Strain rate filtering

The strain rates exhibit very high frequency vitlmasg which are not physical. The strain rate filtgroption will
enable to damp those oscillations and; therefotaimimore physical strain rate values.

If there is no strain rate filtering, the equivalstrain rate is the maximum value of the strate momponents:

£, =maxé, &, &, 26, 2¢,, 2¢,,) EQ.93.L7
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For thin-walled structures, the equivalent strasncomputed by the following approach. 8f  is theirma
component of strain tensor, the kinematic assumgptd thin-walled structures allows to decomposgeithplane
strain into membrane and flexural deformations:

E=KZTE, EQ.9.3.1.8

Then, the expression of internal energy can bytevrias:

t t t
2 2 2 )
E = jag dz :J'Egzdz :IE(KZ+£m) dz EQ.9.3.1.9
t Tt Tt
2 2 2
Therefore:
L t
? 2,2 2 1 2,3 2 2 2
E = [E(k*Z +& +2x6,2) dz = E KT ez KE, EQ. 9.3.1.10
t
: g

The expression can be simplified to:

E = E{l—lzl(zt3 +£§t} = Eeit EQ.9.3.1.11

oy = 1/1—12/(2t2 +&2 EQ.9.3.1.12

The expression of the strain rate is derived fragn £3.1.8:
E=KZ+E, EQ.9.3.1.13

Admitting the assumption that the strain rate gprtional to the strain, i.e.:

E.=QE, EQ.9.3.1.14

K=aK EQ. 9.3.1.15
Therefore:

E=ac¢ EQ.9.3.1.16

Referring to EQ. 9.3.1.12, it can be seen thatquivalent strain rate can be defined using a simeil@ression
to the equivalent strain:

£, =QE EQ.9.3.1.17

by :,/1—12k2t2 +&2 EQ.9.3.1.18
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For solid elements, the strain rate is computedgugie maximum element stretch:
EQ.9.3.1.19

The strain rate at integration poinitn /ANIM/TENS/EPSDOT/i (1<i<n) is calculated byefiollowing expression:

£ =¢, —%(M —1Jtéb EQ.9.3.1.20
n

Where £, is the membrane strain rate /ANIM/TENS/EPSDOT/MEMBd &, is the bending strain rate
IANIM/TENS/EPSDOT/BEND.

The strain rate in upper and lower layers is comgay:

. . 1,.
£, =€, Tt /ANIM/TENS/EPSDOT/UPPER EQ.9.3.1.21
2

N

& =&, _Etgb /ANIM/TENS/EPSDOT/LOWER EQ. 9.3.1.22
The strain rate is filtered by using the followieguation:

¢ (t)=ast)+@-a)e, (t-1) EQ.9.3.1.23

where:

a=2ndtF,,

Where, dt is the time intervalf

~t IS the cutting freqay, andé; is the filtered strain rate.

9.3.1.3 Example: Strain rate filtering
An example of material characterization for a sin@nsile test is given IRADIOSS Example Manual. For the

same example a strain rate filtering allows to reenleigh frequency vibrations and obtain smoothedrésults.
This is shown in Figures 9.3.2 and 9.3.3 wherecthidrequency &= 10 KHz is used.

Figure 9.3.2Force comparison in example 9.3.1.3
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Figure 9.3.3First principal strain rate comparison (max = 10%)

First principal strain rate (max = 10%)

Fcut = 10 kHz

9.3.2 Zerilli-Armstrong plasticity model (law 2)

This law is similar to the Johnson-Cook plastiaitypdel. The same parameters are used to define ohe w
hardening curve. However, the equation that dessrdiress during plastic deformation is:

o=C,+| C ex [—CBT+C4TIn[iJJ +C.e) EQ.9.3.2.1
é-0

where:
O = Stress (Elastic + Plastic Components)
£, = Plastic Strain
T = Temperature (computed as in Johnson Cook plgatici
C, =Yield Stress
n = Hardening Exponent
£ = Strain Rate, must be 1 sonverted into user's time unit
&, = Reference Strain Rate
Additional inputs are:

g,

maxo= Maximum flow stress

Emax= Plastic strain at rupture

The &, enables to define element rupture as in thedplaw. The theoretical aspects related to straie
computation and filtering are also the same.

9.3.3 Cowper-Symonds plasticity model (law 44)
This law models an elasto-plastic material with:
» isotropic and kinematic hardening

» tensile rupture criteria
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The damage is neglected in the model. The workdmind model is similar to the Johnson Cook modek (2)
without temperature effect where the only differ@igin the strain rate dependent formulation. &tpgation that
describes the stress during plastic deformation is:

1
1.
0=(a+b£g 1+=¢£° EQ.9.3.3.1
c

where, 0 = Flow stress (Elastic + Plastic Components)
&, = Plastic Strain (True strain)

a = Yield Stress
b = Hardening Modulus
n = Hardening Exponent
¢ = Strain Rate Coefficient
& = Strain Rate
1/p = strain rate exponent
The implanted model in RADIOSS allows the cycliedening with a combined isotropic-kinematic apptoac

The coefficient Garg Varying between zero and unity is introduced gutate the weight between isotropic and
kinematic hardening models.

In isotropic hardening model, the yield surfacdaitdés without moving in the space of principle stes. The
evolution of the equivalent stress defines the sfzée yield surface, as a function of the equéwabplastic strain.
The model can be represented in one dimensionalasshown in Figure 9.3.4. When the loading dads

changed, the material is unloaded and the strainces. A new hardening starts when the absolutee\afl the
stress reaches the last maximum value (Figure(®)3.4

Figure 9.3.4Isotropic and Kinematic hardening models for defation decrease

(a) Isotropic hardening (b) Prager-Ziegler kinematgrdening
Ao Ao
J,.-Jr—‘;
/ ’ i
/ = o
j ; P
| h p
||'II E ’A"/ 8
=
/
-y

This law is available for solids and shells. Ref@rthe RADIOSS Input Manual for more information about
element/material compatibilities.
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9.3.4 Zhao plasticity model (law 48)

The elasto-plastic behavior of material with stnaite dependence is given by Zhao formula [61]):[62

o=(A+Bg))+(C- Deg‘).lngi+ E& EQ.9.3.4.1
0

where: E, = plastic strain

& = strain rate

A = Yield stress

B = hardening parameter

n = hardening exponent

C = relative strain rate coefficient
D = strain rate plasticity factor

m = Relative strain rate exponent
E = strain rate coefficient

k = strain rate exponent

In the case of material without strain rate efféog, hardening curve given by EQ. 9.3.4.1 is idetio those of
Johnson-Cook. However, Zhao law allows a better@pmation of strain rate dependent materials lpufucing
a nonlinear dependency.

As described for Johnson-Cook law, a strain rédtieriing can be introduced to smooth the resulte flastic flow
with isotropic or kinematic hardening can be modeds described in section 9.3.3. The material iaihappens
when the plastic strain reaches a maximum valua dshnson-Cook model. However, two tensile sthaits
are defined to reduce stress when rupture starts:

_ £~ &
Oy =0, —2—1 EQ.9.3.4.2
Eor &

Where, & is the largest principal strain, afid &gl are rupture strain limits.

If & > &,, the stress is reduced by EQ. 9.3.4.2. Wlse> &,, he stress is reduced to zero.

9.3.5 Tabulated piecewise linear and quadratic el&s-plastic laws
(laws 36 and 60)

The elastic-plastic behavior of isotropic mateisahodeled with user-defined functions for workdering curve.
The elastic portion of the material stress-strairve is modeled using the elastic modulus, E, aigsen's ratio,
U . The hardening behavior of the material is defimetlinction of plastic strain for a given straste (Figure
9.3.5). An arbitrary number of material plastigiyrves can be defined for different strain rates.agiven strain
rate, a linear interpolation of stress for plasti@in change, can be used. This is the case d36aw RADIOSS.
However, in law 60 a quadratic interpolation of flections allows to better simulate the straie effects on the
behavior of material as it is developed in law B0 a given plastic strain, a linear interpolatidrstress for strain
rate change is used. Compared to Johnson-Cook nlagieR), there is no maximum value for the strédse
curves are extrapolated if the plastic deformaigdarger than the maximum plastic strain. The daindg model
may be isotropic, kinematic or a combination oftiive models as described in section 9.3.3. The na&failure

model is the same as in Zhao law.

For some kinds of steels the yield stress depermdenpressure has to be incorporated especiallynfssive
structures. The yield stress variation is then mibvg:

gy =Uy0(5p)" f(p) EQ.9.35.1
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Wherepis the pressure defined by EQ. 2.7.2.1. Druckeg®rmodel described in section 9.3.6 gives a neati
function for f(p) . However, for steel type materialsend the dependence to pressure is low, a simpgarlin
function may be considered:

g, :Uyo(‘fp)"c>< p(fp) EQ. 9.3.5.2

Where,C is user-defined constant apdhe computed pressure for a given deformed cordtgn.
Chard in /IMAT/LAW36 is same like in IMAT/LAW44. Fanore detail on Chard, see 9.3.3.

Figure 9.3.5Piecewise linear stress-strain curves

(o)
£ &
E= gl
£< &,
> £p
The principal strain rate is used for the strate definition:
2 2
% :i de, + dEy + de, - dEy + dyxy EQ. 9.3.5.3
da 2| dt dt da dt dt

For strain rate filtering, refer to section 9.3.1.2

9.3.6 Drucker-Prager constitutive model (laws 10 &1)

For materials like soils and rocks the frictionatiailatational effects are significant. In thesatenials, the plastic
behavior depends on the pressure as the inteliotbfr is proportional to the normal force. Furtmere, for

frictional materials, associative plasticity lavirswhich the plastic flow is normal to the yieldriace, are often
inappropriate. Drucker-Prager [63] yield criterioges a modified von Mises yield criteria to incogie the

effects of pressure for massive structures:

F=J,-(A+AP+AP?) EQ.9.3.6.1
where:
J, = second invariant of deviatoric streds = % S;S;

P = pressure

Ao, A1, A, = material coefficients

Figure 9.3.6 shows EQ. 9.3.6.1 in the plane,al, Rndhe criterion expressed in the space of principal

stresses represents a revolutionary surface witixanparallel to the trisecting of the space asashin Figure
9.3.7. This representation is in contrast with\iba Mises criteria where yield criterion has a wgtical shape.
Drucker-Prager criterion is a simple approach tadehthe materials with internal friction becausé¢haf symmetry
of the revolution surface and the continuity inigdon of normal to the yield surface.
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The pressure in the material is determined in fonabdf volumetric strain for loading phase:
P=f(u) for loading d > 0 EQ.9.3.6.2

Where, f is a user-defined (law 21) or a cubic potyial function (law 10). For unloading phase, i&th
volumetric strain has a negative value, a linekatian is defined as:

P=Cu for unloadingdu <0 andu <0 EQ.9.3.6.3
For unloading with a positive volumetric strainp#rer linear function may be used:
P=Bu for unloadingdy <0 andu >0 EQ.9.3.6.4
In RADIOSS Drucker-Prager model is used in lawsa@tl 2. Neither of these laws can reproduce the mono

dimensional behavior. In addition, no viscous &ffs taken into account.

Figure 9.3.6 Yield Criteria in the plane o{/J_2 and P

A

Amax

tension compression

A0
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Figure 9.3.7 Drucker-Prager yield criteria in space of principtesses
0, 4
Figure 9.3.8 Material pressure variation in function of volunmestrain
AP
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]
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9.3.7 Brittle damage for Johnson-Cook plasticity mdel (law 27)

Johnson-Cook plasticity model is presented in eadi3.1. For shell applications, a simple damagdehcan be
associated to this law to take into account thitlédfiailure. The crack propagation occurs in thenpf shell in
the case of mono-layer property and through trekitgss if a multi-layer property is defined (Fig9r8.9).

Figure 9.3.9 Damage Affected Material

Crack orientation Layer cracking

The elastic-plastic behavior of the material isimked by Johnson-Cook model. However, the stressasturve
for the material incorporates a last part relatedeimage phase as shown in Figure 9.3.10. The dapaagmeters
are:

&, = Tensile rupture strain in direction 1

&1 = Maximum strain in direction 1

d,.. =Maximum damage in direction 1

&, = Maximum strain for element deletion in directibn

The element is removed if one layer of elementhieathe failure tensile straig,, . The nominal affiective
stresses developed in an element are related by:

0,=04(1-d) EQ.9.3.7.1
Where, 0 <d <1 isthe damage factor.

The strains and the stresses in each directiogiaea by:

=i -T2 EQ.9.3.7.2
STH-d)E E Q
_ 0, VO,
&HE=FC "¢ EQ.9.3.7.3
E E
=2 EQ.9.3.7.4
2" -a,)e Q
E(1-d
1= 1_((1_ df)zﬂ (e, +ve,) EQ.9.3.7.5

E
= 1- EQ.9.3.7.6
o, |1_ [L-d V2 |(£2 +(1-d,ve,) Q
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The conditions for these equations are:

O0<d<1
E=E& d=0
E=E,, d=1

A linear damage model is used to compute the darfzeger in function of material strain.
E-E
En &

d= EQ.9.3.7.7

The stress-strain curve is then modified to take atcount the damage by EQ. 9.3.7.1. Therefore:

En—E
o=E-" (g—gtp) EQ.9.3.7.8
Em &

The softening condition is given by:
E & SE & EQ.9.3.7.9
The mathematical approach described here can hiedppthe modeling of rivets. Predit law in RACSS allows

achievement of this end by a simple model wherettier elastic-plastic behavior a Johnson-Cook moded
tabulated law (36) may be used.

Figure 9.3.10Stress-strain curve for damage affected material

(51‘

Omax feemmmmevmnanans

al . E'=E(1-d,)

Element
removed

Y

€t1 €m1 Efrgl

9.3.8 Brittle damage for reinforced concrete mateals (law 24)

The model is a continuum, plasticity-based, damagelel for concrete. It assumes that the main tvilaréa
mechanisms are tensile cracking and compressighic of the concrete material. The material lal eviable
to formulate the brittle elastic — plastic behawbthe reinforced concrete.

The input data for concrete are:
E:. Young's modulus (32000 MPa)

V. Poisson's ratio (0.2)

f.  Uniaxial compressive strength (32 MPa)
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fi/fc Tensile strength ratio (default = 0.1)
fy /f . Biaxial strength ratio (default = 1.2)
f2 /fc confined strength ratio (default = 4.0)
so /f¢ confining stress ratio (default = 1.25)

Experimental results enable to determine the nealtparameters. This can be done by in-plane umitiineal and
bi-axial tests as shown in Figure 9.3.11. The esgiom of the failure surface is in a general foen a

f(o,,J, f.,f,8)-c=0 EQ.9.38.1
where:
J, = second invariant of stress
Il
g, = —- = mean stress

"3

6 = lode angle withcos34 = %%
2

A schematic representation of the failure surfacthé principal stress space is given in Figurel2.3The yield
surface is derived from the failure envelope byddticing a scale factor k{m,H). The meridian planes are
presented in Figure 9.3.13.

The steel directions are defined identically toenat law 14 by a type 6 property set. If a propest is not given
in the element input data, r ,sW¥/ are taken rasmdy as direction 1, 2, 3. For quad elementsection 3 is
taken as theW direction.

Steel data properties are:

E = Young's modulus

g, =Yield strength
E = Tangent modulus

a, = Ratio of reinforcement in direction 1
a, = Ratio of reinforcement in direction 2

a, = Ratio of reinforcement in direction 3
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Figure 9.3.11 Failure surface in plane stress

a
Amial tension

N
. o,
Biaxial tension

Figure 9.3.12 Failure surface in principal stress space

Biaxial compression
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Figure 9.3.13 Meridians of failure and yield surfaces

Failure in Failure in
compression traction
Jonm A \
f. Yield in
compression

\
v rd
. Py -
S A
///6
_—

\ 7
L=

0.5

\

9.3.9 Ductile damage model

In section 9.3.7, a damage model for brittle matsris presented. It is used in RADIOSS law (2Tidvar shell
meshes. The damage is generated when the shel wotlaction only. A generalized damage modeldfactile
materials is incorporated in RADIOSS laws (22), §28). The damage is not only generated in tradtignalso
in compression and shear. It is valid for solidd ahells. The elastic-plastic behavior is formetaby Johnson-

Cook model. The damage is introduced by the uskwfage parametedd . The damage appears in theiahater
when the strain is larger than a maximum valgg,,

0<d<1

o If £<&,,=>0=0 Law 22 is identical to law 2.

o If 26, =E, =(1-J)E andl/dam:%5+(1—5)v

am

This implies an isotropic damage with the samecgffen tension and compression. The inputs of thdehare
the starting damage stra#),, ., and the slope of the softening curvea& shown in Figure 9.3.14.

For brick elements the damage law can be only egpto the deviatoric part of stress tensprasd

E
G = ﬁ This is the case of law (22) in RADIOSS. Howevéthe application of damage law to
dam

stress tensog;;  is expected, RADIOSS law (23) mayseel.
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Figure 9.3.14Ductile damage model
y

Gmax

>

€dam

The strain rate definition and filtering for thdawss are explained in section 9.3.1. The straia &tmay or may
not affect the maximum stress valag, ., according to the user's choice as shown in Figl#ds.

Figure 9.3.15Strain rate dependency

(a) Strain rate effect o, (b) No strain rate effect oo, .,
9 c
A A é>é0 éiéo
Omax — £>€
Omax0 1<—¢<0 Omax}f - - -
al. al.
v >8 8m'ax v >
a=ay(1+ c.In[iJJ a=ay[1+c.ln[iJJ
& &
amax = O-r%ax(l-'_ C' In(ijj Jmax = O-r(r)1ax
‘90
9.3.10 Ductile damage model for porous materials (@son law

52)

The Gurson constitutive law [64] models progressiverorupture through void nucleation and growthisl
dedicated to high strain rate elasto-viscoplastiops metals. A coupled damage mechanical modstfain rate
dependent voided material is used. The materiabiguts several phases in the damage process abeeso
Figure 9.3.16.
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Figure 9.3.16Damage process for visco-elastic-plastic voidecdenids

initial state of Growth of the Nucleation by
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the material existing microvoids decohesion of the mircovoids
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interface or by fracture the matrix
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@ : Inclusion or particle second phase

£ :Void

The constitutive law takes into account the voidvgh, nucleation and coalescence under dynamidrigadhe
evolution of the damage is represented by the voidme fraction, defined by:

— Va _Vm
V

a

f

EQ.9.3.10.1

WhereV,, v, are respectivelthe elementary apparent volume of the materiatthedorresponding elementary
volume of the matrix. The rate of increase of tbalwolume fraction is given by:

f= fg + fn EQ. 9.3.10.2
The growth rate of voids is calculated by:

f — (11— p

f, =@~ f)TracdD’] EQ.9.3103

WhereTrace[DP] is the trace of the macroscopic plastic strain textsor The nucleation rate of voids is given by
the following expression:

A ew-en )
f”:SNf—N\/ETeZ[ . jSM

Wherefy is the nucleated void volume fractid, is the Gaussian standard deviationis the nucleated effective
plastic strain andw is the admissible plastic strain.

EQ.9.3.10.4

The viscoplastic flow of the porous material isatésed by:

o’ 3 o :
Qam:—ezq+2q1fmcos}{§qza—m}—(quf@) if g,> (

M EQ.9.3.10.5
0.2
QM=U—T+2oufD—(1+q3f@) if 0 <0
M
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Where O, the von Mises is effective stress;, is the admissible elasto-viscoplastic stresy; his t

hydrostatic stress andi s the specific coalescence function which can btem as:

fo=f if f<f,
f,— f . EQ. 9.3.10.6
fo=f+ " le(fof)  f f>f Q
fo—f,
Where:
« f_ isthe critical void volume fraction at coalescen
«  f_ is the critical void volume fraction at ductilefture,
. : ) 1 x
« f, isthe corresponding value of the coalescencetiom f, = a CE(f) =1,
ik
The variation of the specific coalescence funcisoshown in Figure 9.3.17.
Figure 9.3.17Variation of specific coalescence function
< > f = fF
e, BT f'=f,  /
1/ i \\‘ O :
I/ 1 AN 1 (@] H
. ! \ i D
SN | @
/ Nucluation ™, L@
<+ : _ Growth i O
II 1 i A T
' 1 1 i O
£ v
N *
— f £
The admissible plastic strain rate is computecHsvis:
&y = D" EQ. 9.3.10.7
M -\ _ . . . .
(1_ f )JM

Where O is the Cauchy stress tensa?,, is the admissible plastic stress d@fts the macroscopic plastic strain
rate tensor which can be written in the case oasociated plasticity as:

00,

DP =/ EQ.9.3.10.8
0o

with Qe\,p the yield surface envelope. The viscoplastidtiplier is deduced from the consistency conditio

Qqp = Qqp =0 EQ.9.3.10.9

From this last expression we deduce that:
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. Q
— evp
A 30 30 0 90 30 30 EQ. 9.3.10.10
STemcer e e TOM A TR (- )00 AA
oo 00 00, 0&, of 00
where:
0Q 2
- Em ~én
7 l[ Sy ]

EQ. 9.3.10.11

R N NI
Ao, AT svant

9.3.11 Connect materials (law 59)

For the moment /MAT/LAWS9 is only compatible witRROP/TYPE43 and /FAIL/CONNECT.

Solid connection element and material:

These materials and properties are only compatittteeach other; /FAIL/CONNECT, and the designated
failure model.

They are designed for spotweld, welding line oeglype connections.

The property is only compatible with standard 8ebdck elements. The element orientation with eespo
the connected surfaces is important, and must fieedie as shown below:

Figure 9.3.18solid connect element

2 Z(nomal) /' 2
' : 3
JJC N ] 3
L 2

The main characteristic of CONNECT property istihge step is independent on the element heighy, aml
the section surface area. Hence, it can be useglderor spotweld connections, with null heightaiee.

Element definition:

The element local coordinate system is construcigide mid-plane section between the bottom anddoes.
The orientation is the same as in RADIOSS shefhelas:
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Figure 9.3.19Points 1a, 2a, 3a and 4a are in the mid distanweckea bottom and top face nodes

t Points 1a, 2a, 3a, 4a are in the mid distance st
bottom and top face nodes

S
4da / 3a

la 2a

The local element system is fully corotational (apty convected), local deformations are thus irhelent on
rigid element rotations.

The element has four Gauss integration points glacéhe mid plane section. Element deformatioranh
point is constructed using nodal displacementsliardr function forms in the following way:

Dzz = sum(Ni*Vzi)i=5,6,7,8 - sum(Nj*Vz))j=1,2,3,4
Dxz = sum(Ni*Vxi)i=5,6,7,8 - sum(Nj*Vx))j=1,2,3,4
Dyz = sum(Ni*Vyi)i=5,6,7,8 - sum(Nj*Vyj)j=1,2,3,4

VX, Vy, and Vz being nodal velocities in local ctational system and Ni the function forms.
It's important to note that these independent Wéemare not deformations but relative displacement
(velocities).

The element has only three “strain” componentsetimn/compression in normal (Z) direction and both
transverse shears XZ and YZ. Actually, in-planeashas well as lateral tractions/compressions doegive
any resistance forces. It's a pure “connectionfredat and is not intended to be used in independant Both
upper and bottom faces have to be tied to diffesemtctural parts.

Material law:

The elastic-plastic behavior is modeled indeperg@minormal and tangent (in-plane) directions atle Gauss
integration points, using user-defined functionsviork hardening curve. There is no coupling betweermal

and shear direction in the material law. The hairdgmodel is purely isotropic. Different numberhafrdening

curves may be defined in each direction, for défgrvalues of deformation rate.

For a given strain rate, a linear interpolationNn corresponding curves is used to find the valubke yield
stress for the actual plastic elongation.

Deformation rates may be optionally filtered. listregard, the law is similar to the classical #dtaglastic
tabulated approach.

Nodal forces are assembled using stress compoc&ctdated in each Gauss integration point, andtiadel
treatment is performed to assure global force aothemt balance at every time step.

Input parameters for material law:

The material stiffness parameters are input asétganent rigidity per section area, which is eqiiwnt to the
Young and shear modulus per height unit [kg / @2 s

The hardening functions are expressed as enginesness relative to plastic elongations.
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Element stability:

The element does not have its own elementary titeqe €orresponding nodal time step is calculatéugus
nodal masses and stiffness to assure the numstédality. In RADIOSS v12.0 the nodal time stepniposed to
the whole model, in the next releases the elemgtitae step is option is maintained if chosen i@ émgine
input file, only the connection material element use nodal time step.

9.4 Viscous materials

General case of viscous materials represents ad@pendent inelastic behavior. However, specianéitin is
paid to the viscoelastic materials such as polynesibiting a rate- and time-dependent behaviore Th
viscoelasticity can be represented by a recoveraisantaneous elastic deformation and a non-reable
viscous part occurring over the time. The charéstterfeature of viscoelastic material is its faglimemory. In a
perfectly elastic material, the deformation is mujonal to the applied load. In a perfectly vissouaterial, the
rate of change of the deformation over time is propnal to the load. When an instantaneous cohs¢gmsile

stressg,, is applied to a viscoelastic materialpw sfontinuous deformation of the material is obedrwWhen

the resulting time dependent straﬂﬁt) , is measuhedtensile creep compliance is defined as :
t
D(t) = & EQ.9.4.0.1
JO

The creep behavior is mainly composed of threegthd$ primary creep with fast decrease in creggrsrate,
(ii) secondary creep with slow decrease in creprstate and (iii) tertiary creep with fast incsedn creep strain
rate. The creep strain rate is the slope of crer@mngo time curve.

Another kind of loading concerns viscoelastic matersubjected to a constant tensile straln,  hismcase, the

stress,a(t) which is called stress relaxation, grdgdacreases. The tensile relaxation modulus is tedined
as:

E(@) = @ EQ.9.4.0.2

0

Because viscoelastic response is a combinatiotasfie and viscous responses, the creep compliandehe
relaxation modulus are often modeled by combinatiohsprings and dashpots. A simple schematic moiel
viscoelastic material is given by the Maxwell modkebwn in Figure 9.4.1. The model is composed délastic
spring with the stiffnesk and a dashpot assigned a viscosity . It is assuhsdhe total strain is the sum of

the elastic and viscous strains:

c=¢g%+¢' EQ.9.4.0.3

Figure 9.4.1Maxwell model

c VWV — |—@
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The time derivation of the last expression givesakpression of the total strain rate:

E=¢£%+¢Y EQ.9.4.04

As the dashpot and the spring are in series, thessis the same in the two parts:

=g EQ. 9.4.0.5

The constitutive relations for linear spring andhiaot are written as:
then o =EE° EQ.9.4.0.6

EQ. 9.4.0.7

Combining EQ. 9.4.0.4, EQ. 9.4.0.6 and EQ. 9.4@n7ordinary differential equation for stress isaited:

. O . .
g= E[é‘——j or g= E&‘—g EQ. 9.4.0.8
Y7 r
whereT = é is the relaxation time. A solution to th&etential equation is given by the convolutioreigtal:
C e dE) t de(t’)
o(t)=| Eg 1 =—"Jdt'=| R{t-t' dt' EQ.9.4.0.9
0)=]. D= R-1) %S

whereR(t) is the relaxation modulus. The last equation iglvfar the special case of Maxwell one-dimensional
model. It can be extended to the multi-axial cage b

J(t) = J‘_tm Ci (t - t') %dt' EQ. 9.4.0.10

whereC,, are the relaxation moduli. The Maxwell maggresents reasonably the material relaxationitBsit
only accurate for secondary creep as the viscoamstafter unloading are not taken into account.

Another simple schematic model for viscoelastic ariats is given by Kelvin-Voigt solid. The model is
represented by a simple spring-dashpot system ngiki parallel as shown in Figure 9.4.2.

Figure 9.4.2Kelvin-Voigt model
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The mathematical relation of Kelvin-Voigt solidvisitten as:
o=Ee+né EQ.9.4.0.11

When 77 =0 (no dashpot), the system is a linearly elaststem. When E=0 (no spring), the material beiravi

is expressed by Newton's equation for viscous $luid the above relation, a one-dimensional madebnsidered.
For multiaxial situations, the equations can beegalived and rewritten in tensor form.

The Maxwell and Kelvin-Voigt models are appropri&te ideal stress relaxation and creep behavidngyTare
not adequate for most of physical materials. A galigation of these laws can be obtained by addthgr springs
to the initial models as shown in Figures 9.4.3 @idd4. The equations related to the generalizexit model
are given as:

o=0+0, EQ. 9.4.0.12
g
E=— EQ. 9.4.0.13
Ei
._0, 0
E=—+— EQ.9.4.0.14
E m
The mathematical relations which hold the geneedlielvin-Voigt model are:
=€ +¢&" EQ. 9.4.0.15
og=0°+0"
Vv \Y,
g g . g
== gh=—; g =—
E E n

The combination of these equations enables to mlitai expression of stress and strain rates:

E= g%+ " =%+é‘k EQ. 9.4.0.16
o =né“+E:&" EQ. 9.4.0.17
+
o=E&- (E E)a + EEe EQ.9.4.0.18
n n

Figure 9.4.3Generalized Maxwell model

G4 ||_ E1
|
G |_ N
4—
Oj E;
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Figure 9.4.4Generalized Kelvin-Voigt model

The models described above concern the viscoelastierials. The plasticity can be introduced inriedels by
using a plastic spring. The plastic element istivacwhen the stress is less than the yield valle modified
model is able to reproduce creep and plasticityabigins. The viscoplasticity law (33) in RADIOSS ghable to
implement very general constitutive laws useful &otarge range of applications as low density dosells
polyurethane foam, honeycomb, impactors and imipaders.

The behavior of viscoelastic materials can be gdized to three dimensions by separating the saedsstrain
tensors into deviatoric and pressure components:

§ = _[;2‘“@ - T)%df EQ. 9.4.0.19

T (t) = LISK(t - r)aai;k dr EQ. 9.4.0.20

wheres; andg; are the stress and strain deviagys. W (t) and K (t) are respectively the dilatation and the
shear and bulk relaxation moduli.

9.4.1 Boltzmann Viscoelastic model (law 34)

This law valid for solid elements can be used feceelastic materials like polymers, elastomemsglnd fluids.
Elastic bulk behavior is assumed. Air pressure btaken into account for closed cell foams:

P=-Ke, +P, EQ.9.4.1.1
with:
3 :_1+T3J:<D ; V=\%‘1+Vo EQ.9.4.12
and:
Ew = In(XJ EQ.9.4.1.3
VO

Where, ) is the volumetric straifD  is the porosﬂg, is the initial air pressure}, is the initial volumetric

strain andK is the bulk modulus. For deviatoric behavior, generalized Maxwell model is used. The shear
relaxation moduli in EQ. 9.4.0.19 is then defined a

W(t)=G +G, " EQ.9.4.1.4

G, =G, -G EQ.9.4.15
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where G, is the short time shear modul(s, is theg ime shear modulus an  is the decay constant,

defined as the inverse of relaxation tinfig

- . with 7, :% EQ.9.4.1.6

S S

The coefficients/), G, and5, are defined for the generalized Maxwell model asshin Figure 9.4.5.

Figure 9.4.5Generalized Maxwell Model for Boltzmann law

From EQ. 9.4.1.4, the value g8  governs the transitrom the initial modulus3, to the final modulés; .
For t=0, we obtairH’(t) =G, andwheh - o théH(t) - G, . Foralineaponse, we puB, =G,

9.4.2 Generalized Kelvin-Voigt model (law 35)

This law uses a generalized viscoelastic Kelving¥anodel whereas the viscosity is based on the éMavi
equations. The effect of the enclosed air is takBnaccount via a separate pressure versus cosignesinction.
For open cell foam, this function may be replacgdb equivalent "removed air pressure" functione fiodel
takes into account the relaxation (zero strain)rateep (zero stress rate), and unloading. It beaysed for open
cell foams, polymers, elastomers, seat cushiomantupaddings, etc. In RADIOSS the law is compatibith
shell and solid meshes.

The simple schematic model in Figure 9.4.6 dessribe generalized Kelvin-Voigt material model wharéme-
dependent spring working in parallel with a Nawdashpot is put in series with a nonlinear rate-ddpat spring.

I
If g, = El is the mean stress, the deviatoric stresges steptn andn+1 are computed by the expressions:
s} =05 —90,0, 0=1 for i=j ese 5=0 EQ.9.4.2.1
+1 -
5'].‘ = ST +det EQ.9.4.2.2
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with:
§ =2Gg, —[G *G S (t)J + 265 g (forizj) EQ.9.4.2.3
To o
5 =Ge _(G = Si (t)J+ =4 &i (fori=j) EQ.94.2.4
o To
whereG andG, are defined as:
. E Ae+B
G =Min , EQ.9.4.25
k) )
-_F&
G = EQ.9.4.2.6
Co2l+y) °

In EQ. 9.4.2.5 the coefficienfsandB are defined for Young's modulus updatés¥ E£+E, ).

Figure 9.4.6Generalized Kelvin-Voigt model for RADIOSS law 35

A—

nonlinear spring Et,vi
—A o
A

E(e),v E
The expressions used by default to compute thespress:
P _cke, —c| KK 5 e[ KK o EQ. 9.4.2.7
dt 31+2n, 31 +2n,
where:
K= _E EQ.9.4.2.8
31-2v)
K, :L EQ.9.4.2.9
I-2v,)
1
P= _é O EQ. 9.4.2.10
&, =In v EQ.9.4.2.11
& v, .9.4.2.
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A and 17, are the Navier Stokes viscosity coefficients whieln be compared to Lame constants in elasticity.

(/] +%j is called the volumetric coefficient of viscosifyor incompressible mode&,‘& =0 and - »

and L, =— . In EQ. 9.4.2.11,,CC and G are Boolean multipliers used to define differeegponses. For

example, &=1, G= G=0 refers to a linear bulk model. Similarly,=C,=Cs=1 corresponds to a visco-elastic bulk
model.

For polyurethane foams with closed cells, the skékpherical stresses may be increased by:

ar — _15)/—?/@ EQ.9.4.2.12
where ) is the volumetric straifP  the porosify, the initial air pressure. In RADIOSS, the pressusg also
be computed with the versus b = Po _ 1, by a user-defined function. Air pressure mapssumed as an
"equivalent air pressure" vsii . YO[:J can defines thinction used for open cell foams or for closet by

defining a model identical to material law FOAM_P8433) (see following sections).

9.4.3 Tabulated strain rate dependent law for visaglastic
materials (law 38)
The law incorporated in RADIOSS can only be usetthwolid elements. It can be used to model:
e polymers,
+ elastomers,
+ foam seat cushions,
e dummy paddings,
* hyperfoams,
* hypoelastic materials.

In compression, the nominal stress-strain curvesliferent strain rates are defined by you (Figai4.7). Up to
5 curves may be input. The curves represent noratredses versus engineering strains.
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Figure 9.4.7Nominal stress-strain curves defined by user ifuttions

Ol

L

The first curve is considered to represent thacskaading. All values of the strain rate lower thidne assumed
static curve are replaced by the strain rate oftagc curve. It is reasonable to set the strati@ corresponding to
the first curve equal to zero. For strain rateb@ighan the last curve, values of the last cureaiged. For a given
value of & , two values of function a for the two immediately lowe,; and higher &, strain rates are read.
The related stress is then computed as:

a
£-¢
0202’“(01—02 1-| — EQ.9.4.3.1

Parametera andb define the shape of the interpolation functiohs. # b = 1, then the interpolation is linear.

Figure 9.4.8 shows the influenceaandb parameters.
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Figure 9.4.8Influence of a and b parameters

The coupling between the principal nominal stregsésnsion is computed using anisotropic PoissRaso:
v, =V, + (v, v, )L-expl- RJg; |)) EQ.9.4.3.2
Where,v: is the maximum Poisson's ratio in tensianbeing the maximum Poisson's ratio in compressiad,

Ry, the exponent for the Poisson's ratio computgiiocompression, Poisson's ratio is always equed Jo

In compression, material behavior is given by nahistress vs nominal strain curves as defined hy fpo
different strain rates. Up to 5 curves may be input

The algorithm of the formulation follows severass:
1. Compute principal nominal strains and straiesat
2. Find corresponding stress value from the cuetevork for each principal direction.
3. Compute principal Cauchy stress.
4. Compute global Cauchy stress.
5. Compute instantaneous modulus, viscosity arilestane step.

Stress, strain and strain rates must be positigenmpression. Unloading may be either defined aitlunloading
curve, or else computed using the "static" cureeresponding to the lowest strain rate (Figures9%#d 9.4.10).
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Figure 9.4.9Unloading behavior (no unloading curve defined)

Figure 9.4.10Unloading behavior (unloading curve defined)
0) /
A )
/] aunloadfunload(e)

(I¢

€

2 Sunload)

V o f1(e) (€l <€)

i
| €

et

It should be noted that for stability reasons, diengs applied to strain rates with a damping facto

£+ Ry (6" - 2m) EQ.9.4.3.3

The stress recovery may be applied to the modetder to ensure that the stress tensor is equegrm in an
undeformed state.

An hysteresis decay may be applied when loadinigaaing or in both phases by:
o =0 Min(L{1-e#0)) EQ.9.43.4
Where,H is the hysteresis coefficient, ap@l is the relaxaparameter.

Confined air content may be taken into accounheeiby using a user-defined function, or usingftiwing
relation:

LV
( VOJ
P =p~—22 EQ.9.4.3.5

air 0
Vi o
VO
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The relaxation may be applied to air pressury; = Min(Pajr , Pmax)exd— Rpt)

9.4.4 Generalized Maxwell-Kelvin model for viscoelstic materials
(law 40)

This law may only be applied to solid elements.

Bulk behavior is assumed to be linear:

dp .
9P _ke EQ.9.4.4.1
dt K ©

Shear behavior is computed using a shear factmilasys:
3
G(t)=G, +> Ge™ EQ.9.4.4.2
1

Figure 9.4.11Maxwell-Kelvin Model

BN AR A A
—\/g/\/‘—[%

s %m ke
Gs - ns
—\ S
Ga r Na
—\/\ A
. _G_1 . -
B are time decaysff, = — = 7WIth T, being relaxation time.

9.4.5 Visco-elasto-plastic materials for foams (la®3)

This material law can be used to model low derditged cell polyurethane foams, impactors, impautérs. It
can only be used with solid elements.

The main assumptions in this law are the following:

* The components of the stress tensor are uncouptédull volumetric compaction is achieved (Pois&o
ration = 0.0).

* The material has no directionality.

» The effect of enclosed air is considered via asgpdressure vs Volumetric Strain relation:

= % EQ.9.4.5.1
y_
_ \%
with: y=\7—l+ Yo EQ.9.45.2

0

Where Y is the volumetric strain@® is the porositl, is the initial air pressure, angk, is the initial

volumetric strain.
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* The skeletal stresseéﬂs) before yield follow the Maxwell-Kelvin-Voight visaastic model (see
Figure 9.4.12):

Figure 9.4.12Maxwell-Kelvin-Voight Model

By

-

(for 125,26y

o(t+At)= a’ijs(t)+(E£ij _( E ; E w;(t)} +% (&, J (At EQ.9.453

The Young's Modulus used in the calculationks= ma><(E, Eé+ Ez)

*  Plasticity is defined by a user-defined curve viuwetric strain, y , org, = A+ B(1+ Cy)

» Plasticity is applied to the principal skeletaksses.

* The full stress tensor is obtained by adding aspure to the skeletal stresses:

;i (t)= Uus(t)‘(Pajr mj) EQ.9.4.5.4

9.4.6 Hyper visco-elastic law for foams (law 62)

Experimental tests on foam specimens working in gr@ssion illustrate that the material behavior ighly

nonlinear. The general behavior can be subdividéal three parts related to particular deformaticdes of
material cells. When the strain is small, the ceisking in compression deform in membrane withcatising
buckling in its lateral thin-walls. In the seconés the lateral thin-walls of the cells buckle lghthe material
undergoes large deformation. Finally, in the laspghe cells are completely collapsed and theaobitetween
the lateral thin-walled cells increases the glatiffness of the material.

As the viscous behavior of foams is demonstratedaripus tests, it is worthwhile to elaborate aenat law
including the viscous and hyper elasticity effedisis is developed in [101] where a decoupling leemviscous
and elastic parts is introduced by using finitengfarmations. Only the deviatoric part of the srémnsor is
concerned by viscous effects.

Material law 62 corresponds to a hyper-elasticdsoiaterial using the Ogden formulation for rubbextenial.
The strain energy functional is given by [34]:

W(C) :Z::%[/]la. AT NS _3+%(J-0/ﬁ _1)J EQ.9.4.6.1

Where, C is the right Cauchy Green Tenser=r'F with F the deformation gradient matrix, are the
eigenvalues of, J = detF,

\Y

P=1=2v)

1
VZ#0 andV # —
an 2

Note that for rubber materials which are almosbimpressible: the bulk modulus is very large comgpacethe
shear modulus.

The ground shear modulus is given by:
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U= EQ. 9.4.6.2

W can be written ds
W(C) =W(C) +U(J) EQ.9.4.6.3

WhereC =F'F , F=J"Y3F
C is the deviatoric part of the right Cauchy Greemdor

U andW are the volumetric and deviatoric parts of theesfoenergy functions anch $he second Piola-
Kirchhoff stress tensor given by:

Sozaiwzzaw —2M+207U: dev | gvol

CALIS EQ. 9.4.6.4
E ~oC ~aCc “acC

2
The Green-Lagrange strain tensor:

W U
Sge“ = ZZ_C and S\)’O' = 2% are the deviatoric and volumetric parts of theoselcPiola-Kirchhoff stress

tensor 9.

Rate effects are modeled through visco-elasticgtggia convolution integral using Prony seriessTurresponds
to an extension of small strain theory or finitdadmation to large strain. The rate effect is agglonly to the
deviatoric stress. The deviatoric stress is contpage

S™(t) =y S (1) - J '2’3DEV[iQi ()] EQ. 9.4.6.5
=

Qi is the internal variable given by the followingea&quations:

() +T1iQi (t) = ‘Ti DEV[Z?/C\:/(t)] EQ. 9.4.6.6

limQ;(t)=0,t - —oo

yidloa], ¢, >0

Qi is given by the following convolution integral:

), d| DEVR20c W8] |
QM) == [ exd-t-s)/7 ] ds EQ. 9.4.6.7
T “» ds
Where:
M;
Yoo =Go /Gg 1=Ye + 2,
i=1
M;
Vi =Gi /Gy Gy =Gy +2.G;
i=1

dev(s) = » —%(- .c)ct
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Go is the initial shear modulu€3, should be exactly the same as the ground sheanlosyd Goo is the long-

term shear modulus that can be obtained from leng-tnaterial testingI; are the relaxation times.

The relation between the second Piola-KirchhofistrtensolS = S™ + S and Cauchy stress tensmis:

1

= FSF!
delF

The reader is invited to consult references [1[11]2], and [118] for more details.

o EQ. 9.4.6.8

9.5 Materials for Hydrodynamic Analysis

The following material laws are commonly used faid simulations:
» Johnson-Cook model for strain rate and temperatependence on yield stress (law 4),
* Hydrodynamic viscous material for Newtonian or wiemnt fluids (law 6),

» Elasto-plastic hydrodynamic materials with von Miseotropic hardening and polynomial pressure (law
3),

» Steinberg-Guinan elasto-plastic hydrodynamic lathwhermal softening (law 49),
* Boundary element materials (law 11),
e Purely thermal materials (law 18)

RADIOSS provides a material database incorporatete installation. Many parameters are alreadinddfby
default and give accurate results. Some of thendeseribed in the following sections:

energy and pressure equations are solved simulisheo

9.5.1 Johnson Cook Law for Hydrodynamics (law 4)

This law enables to model hydrodynamic behaviaroélastic-plastic material using Johnson-Cookdr@giteria
and any equation of state available with /EOS chrbased on law3 (/MAT/LAW3) and adds strain ratel
temperature dependency. The advantage of matawa&Hll regarding classical law02 (/MAT/JCOOK) is tiat
can choose any available EOS from /EOS card.

The equation describing yield stress (scale vagie)

o,=(A+B e ,") (1 +C ln%o) a1-T1" EQ.9.5.1.1
WhereTD :(ij
met ~ 1o

The pressure and energy values are obtained biyngaquation of state P(u,E) related to the mat@&DsS).
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Material parameters are the same as in law 3.
The parameters are:

C = Strain rate coefficient
SO: Reference strain rate.
m = Temperature exponent

T, = Melting temperature
T, ax = Maximum Temperature. For T¥ . :m=11is used.
pOC p= specific heat per unit volume

For an explanation about strain rate filteringereb Chapter 9.3.1.2.

9.5.2 Hydrodynamic Viscous Fluid Law (law 6)

This law is specifically designed to model liquatsd gases.

The equations used to describe the material are:
Sj = 20v§;j EQ.9.5.2.1
p=C,+Cu+C,u?+Cy’ +(C, +C,u)E, EQ. 9.5.2.2
Where, $is the deviatoric stress tensd, is the kinematic viscosity, arﬂa’j is the deviatoric strain rate tensor.

The kinematic viscosity/ is related to the dynamic viscosityj by:

V:Q EQ.9.5.2.3
0
9.5.2.1 Modeling a perfect gas
To model a perfect gas, all coefficients C;, C;, Cs must be set to equal zero. Also:
C4: 05 =y-1 EQ.9.5.2.4
E. = P° EQ.9.5.25
0 -1 .9.5.2.

A perfect gas allows compressibility and expansiod contraction with a rise in temperature. Howgf@rmany
situations, especially very slow subsonic flowsjraxompressible gas gives accurate and reliabldtsawith less
computation.

9.5.2.2 Modeling an incompressible gas

To model an incompressible gas, the coefficientaikhbe set to:
c,=C,=C,=C,=C,=E,=0 EQ. 9.5.2.6
C, = p, [t° EQ.95.2.7

where,c is the speed of sound.

Incompressibility is achieved via a penalty meth®He sound speed is set to at least 10 times thémuaan
velocity.
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This classical assumption is not valid when fluidi atructures are coupled. In this case, set thedsepeed in
the fluid so that the first eigen frequency iseatst 10 times higher in the fluid than in the Strce

9.5.3 Elasto-plastic Hydrodynamic Material (law 3)

This law is only used with solid brick and quadelal elements. It models the elastic and plastigons, similar
to law 2, with a non-linear behavior of pressurd athout strain rate effect. The law is designedimulate
materials in compression.

The stress - strain relationship for the materralar tension is:
a=(A+ Bg',;) EQ.953.1

The pressure and energy values are obtained bingahquation of state P(u,E) related to the mdtésée /EOS).

Input requires Young's or the elastic modulssand Poisson's ratid) . These quantities are used only for the
deviatoric part. The plasticity material parametmes

A = Yield Stress
B = Hardening Modulus

n = Hardening Exponent

O,..x= Maximum flow stress

€ nax= Plastic strain at rupture

A pressure cut off, jan, can be given to limit the pressure in tensiore Ppressure cut off must be lower or equal
to zero. Figure 9.5.1 shows a typical curve oftthdrodynamic pressure.

Figure 9.5.1Hydrodynamic Pressure Relationship

P
F 3
compression
tension Po_ 1
p
Prnin
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9.5.4 Steinberg-Guinan material (law 49)

This law defines as elastic-plastic material whkrimal softening. When material approaches metaigt pthe
yield strength and shear modulus reduces to zém@.nielting energy is defined as:

E,=E +pc,T, EQ.9.5.4.1

Where,E . is cold compression energy arlg, melting temperature is supposed to be constarhelinternal

energyE is less thanE,,, the shear modulus and the yield strength areeefby the following equations:

fE

G=G, [1+ bpv7 ~h(T —TO)}e_E'Em EQ.95.4.2

_fE

o, =0, [1+ b,pV 7 = h(T —TO)} e =5 EQ.9.5.4.3

Where bl , bz, hand  are the material parameters;, is given by a hardening rule:
oy =0,[1+p¢, | EQ.9.5.4.4

The value ofgy is limited by O,

The material pressure p is obtained by solving guaf state P(u,E) related to the material (/E@S)n law 3.

9.6 Void Material (law 0)

This material can be used to define elements taseatvoid, or empty space.

9.7 Failure model

In addition to the possibility to define user’s el failure models, RADIOSS integrates sever@ilifa models.
These models use generally a global notion of cativel damage to compute failure. They are mostgpendent
to constitutive law and the hardening model andhmalinked to several available material laws. Apatibility

table is given in the RADIOSS Reference Guide. fbilewing table gives a brief description of avéile models.

Table 9.0.2 FAILURE MODEL DESCRIPTION

Failure Model Type Description
CHANG Chang-Chang model Failure criteria for conifess
CONNECT Failure Normal and Tangential failurg
model
EMC Extended Mohr Coulomb failu| Failure dependent on effectivg
model plastic strain
ENERGY Energy isotrop Specific energy
FLD Forming limit diagram Introduction of the expeental
failure data in the simulation
HASHIN[128][129] Composite model Hashin model
JOHNSON Ductile failure model Cumulative damage tmged or]
the plastic strain accumulatior]
LAD DAMA Composite delamination Ladeveze delaminatmodel
NXT NXT failure criteria Similar to FLD, but
based on stresses
PUCK Composite model Puck model
SNCONNECT Failure Failure criteria for plastic $tra

01-Jan-2017 69



RADIOSS THEORY Version 2017 MATERIALS

Failure Model Type Description
SPALLING Ductile + Spalling Johnson Cook failure debwith
Spalling effect
TAB1 Strain failure model Based on damage accunua
using user-defined functions
TBUTCHER Failure due to fatigL Fracture appears when tir

integration of a stress expressifpn
becomes true

TENSSTRAIN Traction Strain failure
WIERZBICKI Ductile materic 3-D failure model for solid an
shells
WILKINS Ductile Failure model Cumulative damage law

9.7.1 Johnson-Cook failure model

High-rate tests in both compression and tensiongudie Hopkinson bar generally demonstrate thesstsgain
response is highly isotropic for a large scale etaflic materials. The Johnson-Cook model is vagytar as it
includes a simple form of the constitutive equagidn addition, it also has a cumulative damagettzat can be
accesses failure:

AV
d=) — EQ.9.7.1.1
ng Q

0

with: £, =|D, + D, expD,0" )]{1+ D, |n(£i'ﬂ[1+ DT’ EQ.9.7.1.2

x g
Where A€ is the increment of plastic strain during a logdincrement,0 = —"- the normalized mean stress
JVM
and the parameter®; the material constants. Failure is assumed toragben d=1.

9.7.2 Wilkins failure criteria

An early continuum model for void nucleation is ggated in [98]. The model proposes that the decohes
(failure) stressO, is a critical combination of the hydrostatic s&&s,, and the equivalent von Mises stregg,,

0,=0,+0, EQ.9.7.2.1

In a similar approach, a failure criteria baseca@umulative equivalent plastic strain was propdsetVilkins.
Two weight functions are introduced to control dmenbination of damage due to the hydrostatic anihtteric
loading components. The failure is assumed wherctimulative reaches a critical valde The cumulative
damage is obtained by:

t n i
d, = jONWZ de, = ;WNVZ As,, EQ.9.7.2.2
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AEp is an increment of the equivalent plastic strain,

W, is the hydrostatic pressure weighting factor,
W is the deviatoric weighting factor,
s are the deviatoric principal stresses,

a, a and £ are the material constants.

9.7.3 Tuler-Butcher failure criteria
A solid may break owning to fatigue due to Tulert&her criteria [99]:
p)
d =j; (c-0,) dt EQ.9.7.3.1

Where 0, is the fracture stresgf  is the maximum princiiedss,A is material constant,is the time when
solid cracks and is another material constant called damage integra

9.7.4 Forming Limit Diagram for failure (FLD)

In this method the failure zone is defined in thenp of principal strains (Fig. 9.7.1). The methusdble for shell
elements allows introducing the experimental resulthe simulation.

Figure 9.7.1Generic forming limit diagram (FLD)

v

€ min (%)

9.7.5 Spalling with Johnson-Cook Failure model

In this model, the Johnson-Cook failure model imbmmed to a Spalling model where we take into antdhe
spall of the material when the pressure achieveganum value pin. The deviatoric stresses are set to zero for
compressive pressure. If the hydrostatic tensicomsputed, then the pressure is set to zero. Theda&quations
are the same as in Johnson-Cook model.
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9.7.6 Bao-Xue-Wierzbicki Failure model

Bao-Xue-Wierzbicki model [115] represents a 3-DOcfage criterion which can be expressed by the fatg
equations:

— — — — /m

£ = r?]ax_[gr:ax —frﬂm](l—fm)l EQ.9.7.6.1
gmax = Cle_CZI7

gmin = CSe_CAI7

whereC,, C,, C;, C,, y andm are the material constant, the hardening parameter ardand & are
defined as following:

. _ 0o, _27 J,
» for solids: n=—; §=— 3
O 2 Oy
. forshellss  p=2m . 5=—2—7/7(/72—Ej
UVM 2 3

Where, 0, is the hydrostatic stress],, is the von Mises stress, anl, =S,S,S; are third invariant of
principal deviatoric stresses.
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Figure 9.7.2Graphical representation of Bao-Xue-Wierzbickidad criteria

£ n=const

|

9.7.7 Strain Failure Model

This failure model can be compared to the damaggefin law 27. When the principal tension str&inreaches

&, , a damage factdd is applied to reduce the stress as shown in Fig39The element is ruptured when D=1.

In addition, the maximum straing,; and &, may depend on the strain rate by defining a dcaletion.

Figure 9.7.3Strain failure model
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9.7.8 Specific Energy Failure Model

When the energy per unit volume achieves the véiyethen the damage factor D is introduced to redbee

stress. For the limit valu€&,, the element is ruptured. In addition, the enesgjyes E; and E, may depend on
the strain rate by defining a scale function.

Figure 9.7.4Strain failure model

v
&

9.7.9 XFEM Crack Initialization Failure Model

This failure model is available for Shell only.
The failure mode criteria are written as:

For ductile materials, the cumulative damage patenis:
L A
D=[lo-o )dt
0

Where,
o, is the fracture stress
o is the maximum principal stress
A is the material constant
t is the time when shell cracks for initiationaohew crack within the structure
D is another material constant called damage tiateg

For brittle materials, the damage parameter is:

D= %I{G—Gr 37
0,=0y(1-DP
D=D+DA
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