
 

 

 

 
 

 

 

RADIOSS THEORY MANUAL 
Version 2017 – January 2017 

SPH 
 

 

 

 
 

 
 

Altair Engineering, Inc., World Headquarters: 1820 E. Big Beaver Rd., Troy MI 48083-2031 USA 

Phone: +1.248.614.2400 • Fax: +1.248.614.2411 • www.altair.com • info@altair.com 



RADIOSS THEORY Version 2017  CONTENTS 
 

01-Jan-2017  1 

CONTENTS 
3.0 SMOOTH PARTICLE HYDRODYNAMICS 3 
3.1 SPH APPROXIMATION OF A FUNCTION 3 
3.2 CORRECTED SPH APPROXIMATION OF A FUNCTION 4 
3.3 SPH INTEGRATION OF CONTINUUM EQUATIONS 5 
3.4 ARTIFICIAL VISCOSITY 6 
3.5 STABILITY: TIME STEP CONTROL 7 

3.5.1 CELL TIME STEP 7 
3.5.2 NODAL TIME STEP 7 

3.6 CONSERVATIVE SMOOTHING OF VELOCITIES 8 
3.7 SPH CELL DISTRIBUTION 8 

3.7.1 HEXAGONAL COMPACT NET 8 
3.7.2 CUBIC NET 10 



RADIOSS THEORY Version 2017 SMOOTH PARTICLES HYDRODYNAMICS 
 

01-Jan-2017  2 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  3 
Chapter 

SMOOTH PARTICLE HYDRODYNAMICS 



RADIOSS THEORY Version 2017 SMOOTH PARTICLES HYDRODYNAMICS 
 

01-Jan-2017  3 

3.0 SMOOTH PARTICLE HYDRODYNAMICS 

Smooth Particle Hydrodynamics (SPH) is a meshless numerical method based on interpolation theory. It allows 
any function to be expressed in terms of its values at a set of disordered point’s so-called particles. SPH is not 
based on the particle physics theory. The conservation laws of continuum dynamics, in the form of partial 
differential equations, are transformed into integral equations through the use of kernel approximation. A 
comprehensive state-of-the-art of the method is given in [78], [81], and [82]. These techniques were initially 
developed in astrophysics [79] and [80]. During the 1991-1995 periods, SPH has become widely recognized and 
has been used extensively for fluid and solid mechanics type of applications. SPH method is implemented in 
RADIOSS in Lagrangian approach whereby the motion of a discrete number of particles is followed in time. 

SPH is a complementary approach with respect to ALE method. When the ALE mesh is too distorted to handle 
good results (for example in the case of vortex creation), SPH method allows getting a sufficiently accurate 
solution.  

3.1 SPH approximation of a function 

Let ( )∏ xf  the integral approximation of a scalar function f in space: 

( ) ( ) ( )dyhyxWyfxf ,−= ∫∏
Ω

   EQ.3.1.0.1 

with h the so-called smoothing length and W a kernel approximation such that: 

( )∫Ω =−∀ 1,, dyhyxWx    EQ. 3.1.0.2 

and ( ) ( )yxhyxWx h −=−∀ → δ,lim, 0   (in a suitable sense)   EQ. 3.1.0.3 

δ  denotes the Dirac function. 

Let a set of particles i=1, n at positions xi (i=1,n) with mass mi and density iρ . The smoothed approximation of 

the function f is (summation over neighbouring particles and the particle i itself): 

( ) ( ) ( )hyxWxf
m

xf
ni

i
i

i

s
,

,1

−= ∑∏
= ρ

   EQ. 3.1.0.4 

The derivatives of the smoothed approximation are obtained by ordinary differentiation.  

( ) ( ) ( )hyxWxf
m

xf
ni

i
i

i ,
,1

−∇=∇ ∑
= ρ

   EQ. 3.1.0.5 

The following kernel [83] which is an approximation of Gaussian kernel by cubic splines was chosen (Figure 
3.1.1): 

( )


















+






−=⇒≤
32

3 2

1

3

2

2

3
,

h

r

h

r

h
hrWhr

π
   EQ. 3.1.0.6 
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      EQ. 3.1.0.7 

and ( ) 0,2 =⇒≤ hrWrh         EQ. 3.1.0.8 
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Figure 3.1.1 Kernel based on spline functions  

 

 

This kernel has compact support, so that for each particle i, only the closest particles contribute to 
approximations at i (this feature is computationally efficient). The accuracy of approximating EQ. 3.1.0.1 by EQ. 
3.1.0.4 depends on the order of the particles.  

3.2 Corrected SPH approximation of a function 

Corrected SPH formulation [85], [86] has been introduced in order to satisfy the so-called consistency 
conditions: 

( )∫
Ω

∀=− xhxyW ,1,    EQ. 3.2.0.1 

( ) ( )∫
Ω

∀=−− xhxyWxy ,0,    EQ. 3.2.0.2 

These equations insure that the integral approximation of a function f coincides with f for constant and linear 
functions of space. 

CSPH is a correction of the kernel functions: 

( ) ( ) ( ) ( ) ( )[ ]jjj xxxxhxWhxW −•+= βα 1,,ˆ , with  ( ) ( )hxxWhxW jj ,, −=  EQ. 3.2.0.3 

where the parameters ( )xα  and ( )xβ are evaluated by enforcing the consistency condition, now given by the 

point wise integration as: 

( ) xhxWV
j

jj ∀=∑ ,1,ˆ    EQ. 3.2.0.4 

( ) ( ) xhxWxxV jj
j

j ∀=−∑ ,0,ˆ    EQ. 3.2.0.5 

These equations enable the explicit evaluation of the correction parameters ( )xα  and ( )xβ  as follows: 

W(r,h)

2h

W(r,h)

2h
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( ) ( ) ( ) ( ) ( ) ( )hxWxxVhxWxxxxVx jj
j

jjj
j

jj ,,

1

−







−⊗−= ∑∑

−

β    EQ. 3.2.0.6 

( ) ( ) ( ) ( )[ ]∑ −•+
=

j
jjj xxxhxWV

x
β

α
1,

1
   EQ. 3.2.0.7 

Since the evaluation of gradients of corrected kernel (which are used for the SPH integration of continuum 
equations) becomes very expensive, corrected SPH limited to order 0 consistency has been introduced. 
Therefore, the kernel correction reduces to the following equations: 

( ) ( ) ( )xhxWhxW jj α,,ˆ =    EQ. 3.2.0.8 

( ) xhxWV j
j

j ∀=∑ ,1,ˆ    EQ. 3.2.0.9 

that is  ( ) ( )∑
=

j
jj hxWV

x
,

1α    EQ. 3.2.0.10 

Note that SPH corrections generally insure a better representation even if the particles are not organized into a 
hexagonal compact net, especially close to the integration domain frontiers. SPH corrections also allow the 
smoothing length h to values different to the net size x∆  to be set. 

3.3 SPH Integration of continuum equations 

In order to keep an almost constant number of neighbors contributing at each particle, use smoothing length 
varying in time and in space. 
 

Consider id  the smoothing length related to particle i; 
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           EQ. 3.3.0.1 
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           EQ. 3.3.0.2 
At each time step, density is updated for each particle i, according to: 

ii
i

v
dt

d ⋅∇−= ρρ
   EQ. 3.3.0.3 

with ( ) ( )iWvv
m

v jji
j

j

i
∇⋅−=⋅∇ ∑ ρ

   EQ. 3.3.0.4 

where, jm  indicates the mass of a particle i, iρ  its density, iv  its velocity. 
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Strain tensor is obtained by the same way when non pure hydrodynamic laws are used or in the other words 
when law uses deviatoric terms of the strain tensor: 

( ) ( ) .3...1,3...1, ==−=∑ βα
ρ β

αα
β

α

i
dx

dW
vv

m

dx

dv j
ji

j

j

i

   EQ. 3.3.0.5 

Next the constitutive law is integrated for each particle. Then Forces are computed according to : 
 

( ) ( )[ ] ( ) ( )[ ]
2

jWiW
mmjWpiWpVV

dt

dv
m ij

ijj
j

iijjij
j

i
i

i

∇−∇
−∇−∇−= ∑∑ π  EQ. 3.3.0.6 

 

where ip  and jp  are pressures at particles i and j, and ijπ  is a term for artificial viscosity. The expression is 

more complex for non pure hydrodynamic laws. Note that the previous equation reduces to the following one 
when there is no kernel correction: 

[ ] ( ) ( ),iWmmiWppVV
dt

dv
m jijj

j
ijjij

j
i

i
i ∇−∇+−= ∑∑ π  since ( ) ( )iWjW ji −∇=∇  EQ. 3.3.0.7 

Then, search distances are updated according to: 

( )
3

i
i

i
v

d
dt

dd ⋅∇
=    EQ. 3.3.0.8 

in order particles to keep almost a constant number of neighbors into their kernels ( 3dρ  is kept constant). 

3.4 Artificial viscosity 

As usual in SPH implementations [83], viscosity is rather an inter-particles pressure than a bulk pressure. It was 
shown that the use of EQ. 3.4.0.1 and EQ. 3.4.0.2 generates a substantial amount of entropy in regions of strong 
shear even if there is no compression. 

( )

2

2

2

i j
b ij ij

ij

i j

c c
q qαµ µ

π
ρ ρ

+
− +

=
+

   EQ. 3.4.0.1 

with 
( ) ( )

22

ijji

jijiij
ij

dXX

XXvvd

ε
µ

+−

−•−
=    EQ. 3.4.0.2 

where iX  (resp. jX ) indicates the position of particle I (resp.j) and ci (resp cj) is the sound speed at location i 

(resp.j), and qa and qb are constants. This leads us to introduce EQ. 3.4.0.3 and EQ. 3.4.0.4, as explained in [82]. 
The artificial viscosity is decreased in regions where vorticity is high with respect to velocity divergence. 

( )

2

2

2

i j
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π
ρ ρ

+
− +

=
+

   EQ. 3.4.0.3 
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with 
( ) ( ) ( )

k

k
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k
k

ji
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jijiij
ij
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c
vv

v
f

ff
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XXvvd

εε
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′+×∇+⋅∇

⋅∇
=

+

+−

−•−
= ,

222
  EQ. 3.4.0.4 

Default values for qa and qb are respectively set to 2 and 1. 
 

3.5 Stability: Time step control 

The stability conditions of explicit scheme in SPH formulation can be written over cells or on nodes. 

3.5.1 Cell time step 
In case of cell stability computation (when no nodal time step is used), the stable time step is computed as: 

( ) ( )
2

min , , max
1

i a i i
sca i i b i j ij

ii i i

d q d
t t with q and

cc

µα µ µ
α α

 
 ⋅ ⋅ ∆ = ∆ ⋅ = + =  
 + + 

 

 

 EQ. 3.5.1.1 

scat∆  is the user defined coefficient (RADIOSS option /DT or /DT/SPHCEL). The value of scat∆ =0.3 is 

recommended in [83]. 

 

3.5.2 Nodal time step 
In case of nodal time step, stability time step is computed in a more robust way: 

i

i
i K

m
t

2=∆  at particle i   EQ. 3.5.2.1 

Use the following notations, if kernel correction: 

( ) ( )ˆ ˆ
2 2

i j i j
j i j j xi j

d d d d
W i W x x and W i grad W x x′ ′

 + +   
= − ∇ = −            

   EQ. 3.5.2.2 

Or, if no kernel correction: 

( ) ( )
2 2

i j i j
j i j j xi j

d d d d
W i W x x and W i grad W x x′ ′

 + +   
= − ∇ = −            

   EQ. 3.5.2.3 

Recalling that apart from the artificial viscosity terms: 

( ) ( )[ ]∑ ∇−∇==
j

jjjijiijiji jWpiWpVVFFF ,    EQ. 3.5.2.4 

write ( ) ( ) ( ) ( )[ ]( )jWpiWpVV
uud

d

uud

dF
K ijjiji

jiji

ij
ij ∇+∇

−
≤

−
=    EQ. 3.5.2.5 
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where ui - uj is the relative displacement of particles i and j. Keeping the only first order terms leads to : 

( ) ( ) ( ) ( )











∇

−
+∇

−
≤ jW

uud

dp
iW

uud

dp
VVK i

ji

j
j

ji

i
jiij     EQ.3.5.2.6 

Where, 

( ) ( ) ( ) ( ) ( ) ( )iW
uud

d
cVViW

uud

d

d

dp
VViW

uud

dp
VV j

ji

i
ijij

ji

i

i

i
jij

ji

i
ji ∇

−
=∇

−
⋅=∇

−
ρρ

ρ
2

 EQ.3.5.2.7 

that is ( ) ( ) ( ) 222 iWVcmiW
uud

dp
VV jjiij

ji

i
ji ∇=∇

−
ɺ      EQ.3.5.2.8 

Same reasoning leads to: 

( ) ( ) ( ) 222 jWVcmjW
uud

dp
VV iijji

ji

j
ji ∇=∇

−
ɺ    EQ.3.5.2.9 

So that ( ) ( ) 222222 jWVcmiWVcmK iijjjjiiij ∇+∇≤ ɺɺ      EQ.3.5.2.10 

Stiffness around node i is then estimated as: 

∑≤
j

iji KK    EQ.3.5.2.11 

3.6 Conservative smoothing of velocities 

It can be shown that the SPH method is unstable in tension. The instability is shown to result from an effective 
stress with a negative modulus (imaginary sound speed) being produced by the interaction between the 
constitutive relation and the kernel function, and is not caused by the numerical time integration algorithm [84]. 
According to [82], use special filtering of velocities (so called conservative smoothing, because momentum 
quantities are not modified): 

( ) ( ) ( ) ( )
∑

+
−

+
+=

j

ji
ij

ji

j
csii

iWjW
vv

m
vsmoothedV

2

2

ρρ
α    EQ.3.6.0.1 

3.7 SPH cell distribution 

It is recommended to distribute the particles through a hexagonal compact or a cubic net. 

3.7.1 Hexagonal compact net 
A cubic centered faces net realizes a hexagonal compact distribution and this can be useful to build the net 
(Figure 3.7.1). The nominal value h0 is the distance between any particle and its closest neighbor. The mass of 
the particle mp may be related to the density of the material ρ  and to the size h0 of the hexagonal compact net, 

with respect to the following equation: 

ρ
2

3
0h

mp ≈    EQ.3.7.1.1 
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since the space can be partitioned into polyhedras surrounding each particle of the net, each one with a volume: 

2

3
0h

Vp ≈    EQ.3.7.1.2 

But, due to discretization error at the frontiers of the domain, mass consistency better corresponds to 
n

V
mP

ρ=  

where V is the total volume of the domain and n the number of particles distributed in the domain. 

Figure 3.7.1 Local view of hexagonal compact net and perspective view of cubic centered faces net 

 
 

Note that choosing h0 for the smoothing length insures naturally consistency up to order 1 if the previous 
equation is satisfied. 

Weight functions vanish at distance 2h where h is the smoothing length. In an hexagonal compact net with size 
h0, each particle has exactly 54 neighbors within the distance 2h0 (Table 3.7.1). 

 

Table 3.7.1 Number of neighbors in a hexagonal compact net 

Distance d Number of particles at distance d Number of particles within distance d 

0h  12 12 

02h  6 18 

03h  24 42 

02h  12 54 

05h  24 78 
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3.7.2 Cubic net 
Let c the side length of each elementary cube into the net. The mass of the particles mp should be related to the 
density of the material ρ  and to the size c of the net, with respect to the following equation: 

ρ3cmp ≈    EQ.3.7.1.3 

By experience, a larger number of neighbors must be taken into account with the hexagonal compact net, in 
order to solve the tension instability as explained in following sections. A value of the smoothing length between 
1.25c and 1.5c seems to be suitable. In the case of smoothing length h=1.5c, each particle has 98 neighbors 
within the distance 2h. 

 

Table 3.7.2 Number of neighbors in a cubic net 

Distance d Number of particles at distance d Number of particles within distance d 

c 6 6 

c2  12 18 

c3  8 26 

2c 6 32 

c5  24 56 

c6  24 80 

2 c2  12 92 

3c 6 98 

 


