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3.0SMOOTH PARTICLE HYDRODYNAMICS

Smooth Particle Hydrodynamics (SPH) is a meshlessenical method based on interpolation theorylldnes

any function to be expressed in terms of its vahtea set of disordered point’s so-called partic&RH is not
based on the particle physics theory. The conservdaws of continuum dynamics, in the form of palrt
differential equations, are transformed into inggequations through the use of kernel approximati&

comprehensive state-of-the-art of the method igmin [78], [81], and [82]. These techniques werigdlly

developed in astrophysics [79] and [80]. During 1881-1995 periods, SPH has become widely recodrinel
has been used extensively for fluid and solid meidsatype of applications. SPH method is implemerite
RADIOSS in Lagrangian approach whereby the motioa discrete number of particles is followed ind¢im

SPH is a complementary approach with respect to Aldthod. When the ALE mesh is too distorted to kand
good results (for example in the case of vortexatioa), SPH method allows getting a sufficientlcaate
solution.

3.1 SPH approximation of a function

Let I_l f (X) the integral approximation of a scalar functfon space:
[ f(x)=] f(yW(x-yh)y EQ.3.1.0.1
Q

with h the so-called smoothing length awta kernel approximation such that:

DX,IQW(x— Y, h)dy:1 EQ.3.1.0.2

and Ox, lim, ,W(x-y,h)=d(x-y) (in a suitable sense) EQ.3.1.0.3
O denotes the Dirac function.

Let a set of particles i=1, n at positiongix1,n) with massn and density 0, . The smoothed approximation of
the functionf is (summation over neighbouring particles andpeiclei itself):

|_|Sf(x): Zﬂ f(x W(x~-y,h) EQ.3.1.0.4

i=1n pi

The derivatives of the smoothed approximation &taioed by ordinary differentiation.

0f (x) = Zﬂ f (x OW(x-y,h) EQ.3.1.05
i=Ln Mij
The following kernel [83] which is an approximatiof Gaussian kernel by cubic splines was chosegu(Ei
3.1.1):
2 3
r<h=W(r,h)= 33 2 ()4 EQ.3.1.0.6
270713 \h 2{h
h<r<2h=W(r,h)= L (Z—LT EQ.3.1.0.7
arh® h
and2h<r =W(r,h)=0 EQ.3.1.0.8
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Figure 3.1.1 Kernel based on spline functions

W(r.h)

This kernel has compact support, so that for eaahticpe i, only the closest particles contribute to
approximations &t (this feature is computationally efficient). Thecaracy of approximating EQ. 3.1.0.1 by EQ.
3.1.0.4 depends on the order of the particles.

3.2 Corrected SPH approximation of a function

Corrected SPH formulation [85], [86] has been idtrced in order to satisfy the so-called consistency
conditions:

[W(y=-xh)=10x EQ.3.2.0.1
Q
I(V‘X)‘N(V—X, h)=0,0x EQ.3.2.0.2
Q

These equations insure that the integral approximaif a functionf coincides withf for constant and linear
functions of space.

CSPH is a correction of the kernel functions:
W, (x,h) =W, (x, h)a(x)[1+ B(x) (x- X, )] Jwith W, (x,h)=W(x-x,,h)  EQ.32.03

where the paramete a(x) and ,B(X) are evaluated by enforcing the consistency comgitimw given by the
point wise integration as:

>VW, (x,h) =1,0x EQ.3.2.0.4
j

>V, (x= %, M, (x,h) = 0, EQ.3.2.05
j

These equations enable the explicit evaluatiom@fcbrrection paramete a(x) and ,[3’(X) as follows:
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-1

B(x) = [;vj (x - X ) D(x - X )Nj (x,h) ;vj (xj - x)\Nj (x,h) EQ.3.2.0.6

U(X) L EQ. 3.2.0.7

- Zj:VjV\/j (x, h)[1+ B(x)e (x -X, )J

Since the evaluation of gradients of corrected &efwhich are used for the SPH integration of amuntim
equations) becomes very expensive, corrected SPRi{el to order 0 consistency has been introduced.
Therefore, the kernel correction reduces to thefohg equations:

W, (x,h) =W (x, h)a(x) EQ.3.2.0.8
S'VW, (x,h) =1,0x EQ.3.2.0.9
j
_ 1
thatis @(X) = —=——7— EQ. 3.2.0.10

Note that SPH corrections generally insure a be#presentation even if the particles are not drgahinto a
hexagonal compact net, especially close to thegiat®mn domain frontiers. SPH corrections alsovallihe

smoothing lengtth to values different to the net siAX to be set.

3.3 SPH Integration of continuum equations

In order to keep an almost constant number of m@ighcontributing at each particle, use smoothémgih
varying in time and in space.

Considet di the smoothing length related to partigle

. A d; +d, . N d +d,
W, (I):W X =X, > and W, (l) =grad|, |W| x-x;, > if kernel correction,
EQ.3.3.0.1
L\ di +dj L\ _ di +dj . .
or W, (I)—W X =X, > and W, (l)— grad|, | W| x-x;, > without kernel correction.
EQ. 3.3.0.2
At each time step, density is updated for eachigbait according to:
do) _ -p 0 EQ. 3.3.0.3
at |, !
i 054 = X 20y v, )ow, )
with O V], —Zp— v~V i EQ.3.3.0.4
i

where, M, indicates the mass of a parti¢l 0, its density.V, its velocity.
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Strain tensor is obtained by the same way wherpooa hydrodynamic laws are used or in the othedwor
when law uses deviatoric terms of the strain tensor

av’
dx”?

:Z%(W”‘V?)%(i)’az1'3'3:]"3' EQ. 3.3.0.5
i j

Next the constitutive law is integrated for eacltipke. Then Forces are computed according to :

|[ow, (1) - ow ()
2

d | |
m & =2 lpow ()~ pow(i]-Zmm

EQ. 3.3.0.6

where p, and p; are pressures at particiesndj, and 71, is a term for artificial viscosity. The expressisn

more complex for non pure hydrodynamic laws. Nbtg the previous equation reduces to the follovaing
when there is no kernel correction:

d : : : .
md_\t/‘ :_ZV‘VJ[p' + pj]DVVj(|)—mejnijDV\/j(|), sinceOW (j)=-0OW (i)  EQ.3.3.0.7
i ] ]

Then, search distances are updated according to:

d(d) _ d O EQ.3.3.0.8
dt 3

in order particles to keep almost a constant nurobaeighbors into their kernel ,Od3 is kept constant).

3.4 Artificial viscosity

As usual in SPH implementations [83], viscosityather an inter-particles pressure than a bulkspires It was
shown that the use of EQ. 3.4.0.1 and EQ. 3.4.8r2m@tes a substantial amount of entropy in regidissrong
shear even if there is no compression.

CI +Cj 5
~ =0, 2 M O, H;
7= EQ. 3.4.0.1
(0+p)

2

d; (Vi _Vj)' (xi _Xj)
Hxi _XJHZ""EdiJ2

with £4; = EQ. 3.4.0.2

where X, (resp Xj ) indicates the position of particle | (resp.j) amdrespc) is the sound speed at location

(resp.j), andja andqp are constants. This leads us to introduce EQ0.3.4nd EQ. 3.4.0.4, as explained in [82].
The artificial viscosity is decreased in regionsewehvorticity is high with respect to velocity dirgence.

CI +Cj 5
~ =0, 2 M O, H;
7= EQ.3.4.0.3
(0+p)

2
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d; (Vi _Vj)' (Xi _Xj)(fi + fi) f = “D Mk”

with z4 = , =
I R 2 HD%“’“HDXWK“”’;

EQ. 3.4.0.4

Default values for gand @ are respectively set to 2 and 1.

3.5 Stability: Time step control

The stability conditions of explicit scheme in SRidimulation can be written over cells or on nodes.

3.5.1 Cdl time step

In case of cell stability computation (when no rdifae step is used), the stable time step is caetpas:
At = At in, 4 with g, :(qb +anﬁiBiiJ ,and  f = max (,uij)
G (cn +ya?’ +1) !
EQ.35.1.1
At is the user defined coefficient (RADIOSS optionT/Br /DT/SPHCEL). The value cAt_, =0.3 is

sca
recommended in [83].

3.5.2 Nodal time step

In case of nodal time step, stability time stepdmputed in a more robust way:

At = 2?”1 at particle i EQ.35.2.1

Use the following notations, if kernel correction:

N A d; +d; . - d +d;
W, (i) =W/ x - x; 5 and OW, (i) = grad| 4 | W| x-X; 5 EQ.3.5.2.2
Or, if no kernel correction:

. d +d]- . d, +d]-
W, (i) =W/ x - x; 5 and OW, (i) = grad|,; |W/| x=X; 5 EQ.3.5.2.3
Recalling that apart from the artificial viscosigrms:

F=>FF =V, pOW, (i) - p,ow; (j)) EQ.35.2.4
i

write |Kij| =‘

dF,
U —u

dlu-u,)

< —alplow Ol plow ()] £0.3525
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where y- u; is the relative displacement of particles i anidgeping the only first order terms leads to :

K| =wv, —(UOIIE—'U)HDWj (i) +E(pr_—'u])||DVVI(J)||} EQ.35.2.6

Where,
d do .
V JE(—)“DW =WV, d; Gd_(mHDW Vivjng(uie—luj)HDVVj(I]‘ EQ.35.2.7
that sV, afri—'uj)”DWi () = mevz|ow, () £Q.35.28
Same reasoning leads to:
Wi g ) W) = meN oW ) £Q352
so thai| K| < mcV7[OwW, ( )ﬂ +m,cAZ|ow(j)f EQ.3.5.2.10

Stiffness around nodds then estimated as:

K| SZ‘KU‘ EQ.3.5.2.11
j

3.6 Conservative smoothing of velocities

It can be shown that the SPH method is unstablerision. The instability is shown to result fromeffective
stress with a negative modulus (imaginary soundedpédeing produced by the interaction between the
constitutive relation and the kernel function, amdot caused by the numerical time integratioroddlgm [84].
According to [82], use special filtering of velde# (so called conservative smoothing, because minmme
quantities are not modified):

2m, Wi(i)+w; (i)
V. (smoothed ) = v, +a v, -v | ——1= EQ.3.6.0.1

3.7 SPH cdll distribution

It is recommended to distribute the particles tigioa hexagonal compact or a cubic net.

3.7.1 Hexagonal compact net

A cubic centered faces net realizes a hexagonapaoimmdistribution and this can be useful to bulé net
(Figure 3.7.1). The nominal valueg Is the distance between any particle and its stoseighbor. The mass of
the particlem, may be related to the density of the mate pand to the siz&o of the hexagonal compact net,

with respect to the following equation:

m. =

LS
b= 2”

EQ.3.7.1.1
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since the space can be partitioned into polyheslre®unding each particle of the net, each one avitblume:

2 EQ.3.7.1.2

But, due to discretization error at the frontiefshe domain, mass consistency better correspanéig t = ﬂ
n

whereV is the total volume of the domain andhe number of particles distributed in the domain.

Figure 3.7.1 Local view of hexagonal compact net and perspedsiie of cubic centered faces net

Note that choosingohfor the smoothing length insures naturally coesisy up to order 1 if the previous
equation is satisfied.

Weight functions vanish at distance 2h where thésgmoothing length. In an hexagonal compact nit size
ho, each particle has exactly 54 neighbors within tiseadce2h, (Table 3.7.1).

Table 3.7.1 Number of neighbors in a hexagonal compact net

Distance d Number of particles at distance d Nunobgarticles within distance d

h 12 12

J2h, 6 18

V3h, 24 42
2h, 12 54
\/5h, 24 78
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3.7.2 Cubic net

Let c the side length of each elementary cube into #ie The mass of the particles should be related to the
density of the materi: 0 and to the size of the net, with respect to the following equation

~ A3
m, =c’p EQ.3.7.1.3

By experience, a larger number of neighbors mustaken into account with the hexagonal compact inet,
order to solve the tension instability as explaiimetbllowing sections. A value of the smoothingdgh between
1.25c and 1.5c seems to be suitable. In the case of smoothingHemgl.5¢c, each particle has 98 neighbors
within the distance 2h.

Table 3.7.2 Number of neighbors in a cubic net

Distance d| Number of particles at distance Mumber of particles within distance d
C 6 6
J2c 12 18
J3c 8 26
2c 6 32
\5¢ 24 56
Jéc 24 80
2v2¢ 12 92
3c 6 98
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