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11.0 STATIC

Explicit scheme is generally used for time inteigrain RADIOSS, in which velocities and displacenseare

obtained by direct integration of nodal acceleraias described in Chapter 4. With this approdehtiine step
is often small due to stability condition. For thiatic solution of structural mechanical problersglze steady
state is a part of the transient response for pdeat-step load, the use of explicit scheme is spdssible if

the computation time remains reasonable. Howewestatic or slow dynamic computations as duratibthe

study is large, many cycles are necessary to cartryhe simulation.

To resolve static problems, an alternative to eiplnethod is the implicit time-integration schente.this
method, a system of nonlinear equations is obtaaretithen resolved by Newton-Raphson method. Itbean
shown that the implicit scheme is always stableatTiesults in a large time step with the explicithod.
However, as a global stiffness matrix should besedded and inverted, the method is relatively tigkt per
loading step.

The primary difference between the explicit and limipmethods is that an explicit algorithm obtaite next
value from known previous values. An implicit methassumes a solution to a problem and solves thetiegs
simultaneously. As the global equilibrium equatiengenerally nonlinear, an iterative numerical heon is
generally used.

The implicitmethod might fail when:

e The material law is highly nonlinear. Complicatedterial behavior is easier to accommodate using an
explicit method.

* The number of elements is too large.

» Explicit method does not require large matrix irsien, the 1/O is less important and the memory
required is also less.

» Matrices must be re-evaluated at each time stegamdost of the iterations.
In such cases the CPU time of an explicit solubenomes competitive:
» The problem includes several contacts. Contactrigigos are very efficient in explicit programs.

* The static analysis is a pre-loading case befoffellg dynamic behavior phase. In this case, the
coupling of two phases is very common.

» Explicit approaches furnish an alternative to thevipus cases.

As of RADIOSS V5 both of implicit and explicit meaitls are available to study the static behaviorysfesns.
The choice a method depends on the nature of tigdegn and the engineer’s feeling. The explicit apph is
especially attractive for problems with highly nioelar geometric and material behavior as all gtiastmay be
treated as vectors, resulting in low storage requénts. The number of cycles to achieve convergeraebe
quite large, but global efficiency is generally ebsed. The implicit method is introduced to studfjceently
static applications such as spring back in sheetalmi®rming or gravity loading or other initial $ta
computations before / after dynamic simulations.

11.1 Static solution by explicit time-integration

Explicit algorithms are very useful for modelingdgnamic simulation. However, they cannot model asitu
static or static simulation as easily. This is the fact that in an explicit approach, first thelabaccelerations
are found by resolving the equilibrium equationtiate t,. Other d.o.f's are then computed by explicit time
integration. This procedure implies that the nagladeleration must exist; however, some numericahous
may be employed for the simulation of a static pesc

*  Slow dynamic computation

The loading is applied at a rate sufficiently slmvminimize the dynamic effects. The final solutisrobtained
by smoothing the curves.

In case of elasto-plastic problems, one must mizgénadiynamic overshooting because of the irreveisikof the
plastic flow.
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» Dynamicrelaxation or Nodal Damping (/DYREL)

This method was first introduced by Otter [19] dras been used in several hydrodynamic codes (&ENIH
[2]). A nodal dampindCv is added to the momentum equation:

M %’ +Cu=f™-f™" EQ.11.1.1.1

The dashpot force is calculated by:
F.=-CV EQ.11.1.1.2

c

The internal force is calculated by:

F.=—KX =F _,,, + KVAt EQ.11.1.1.3
— Fk
H=y EQ.11.1.1.4

The total acceleration is given by:

F Ccv

12 :yo+ﬁ:yo_v EQ.11.1.1.5
Vearrz =Viearz T 1A EQ.11.1.1.6
_ 1
V =Viap +EV1N EQ.11.1.1.7
Visarz =Viear2 Vo —C;A—VAt EQ.11.1.1.8
You have:
_ C 1
Vieaz =Vioaz T VoAt _M Vi-atrz +§V1At At EQ.11.1.1.9
CAt 1 C
Visatrz = (1_W)\/1—At/2 +(Vo _E JZ7A\S MJAJ{ EQ. 11.1.1.10
Visatr2 :(1_%)\/1—m/2 +|1-At h JZ7A\s EQ.11.1.1.11
M My,

. . . At .
Approximation-— =1 after the variable is changed)= Cm , you obtain :

Yo
Va2 = (1_ 26‘“)\4—m/2 + (1_ a)yoAt EQ. 11.1.1.12
C():Cﬂ - C :ZNI_CL EQ.11.1.1.13
2M At
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Which gives the expression Gfas a proportional matrix td with:

2
C=AM and = EQ.11.1.1.14
At
2
or A= —'B EQ.11.1.1.15
T
w= ,[3'E EQ. 11.1.1.16
T
Combining EQ. 11.1.1.14 and 15, and you obtain:
2
:%ﬂ\/l EQ.11.1.1.17

Wheref is the relaxation coefficient whose recommendeltievés 1. T is less than or equal to the highest
period of the system. These are the input parasaterd in /[DYREL option.

The explicit time integration scheme is changeddmpute the new velocities. The explicit time ims&gpn in
Chapter 4 gives (EQ. 4.1.2.7):

V,

t+At/2

=V,

a2 T VAL EQ. 11.1.1.18

which is now written as:
Vioars = 0= 2a Vg o + [1- @)y At EQ.11.1.1.19

where:

At
w= ’BT EQ. 11.1.1.20

* Energy discreterelaxation

This empirical methodology consists in setting éoazthe nodal velocities each time the Kinetic Ggeeaches
a maximum.

* Rayleigh damping
In this method a proportional damping matrix isided as:

Table 1:[C] = a[M]+ B[K] EQ.11.1.1.21
where @ and S are the pre-defined constants. In modal analylses,use of a proportional damping matrix

allows to reduce the global equilibrium equation meuncoupled equations by using an orthogonal
transformation.

If the global equilibrium equation is expressed as:

IMEX}+[chx}+ KX} ={F} EQ.11.1.1.22
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The transformed uncoupled system of equations eamrlten as:

(oA Tk} [ [clé} + of KN} = o {F) £Q. 11.1.1.23

[a+ By 0 . 0
0 a+pw’ . . 0
with [ [Cld=| . _ . , EQ.11.1.1.24
0 : . oa+fw)

Each uncoupled equation is written as:
&2l é+aE =1 EQ. 11.1.1.25

with 2{,@ =a+Bw’ EQ.11.1.1.26
Where &, is the " natural frequency of the system add i damping ratio.

This leads to a system of n equations with two omkn variables@ andf3. Regarding to the range of the
dominant frequencies of system, two frequenciexhosen. Using the pair of the most significangfrencies,
two equations with two unknown variables can belwesl to obtain values fo andf3. For high frequencies

the role of 8 is more significant. However, for lower frequersc@ plays an important role (Fig. 11.1.1).

Fig. 11.1.1 Rayleigh damping variation for natural frequencies
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yd @ AN 2
N Vd

N
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Damping Ratio (C/Cg)
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The Rayleigh damping method applied to explicitetimtegration method leads to the following equaio

My +CV' =F,, - F, EQ.11.1.1.27
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with C=aM + BK

dt

_ t-—
Fo = Fnc® +Kv 2t EQ.11.1.1.28
Lt
Vizy 2 +y‘% EQ.11.1.1.29
My, = Foq = Fin EQ.11.1.1.30

dt

_ t
Neglecting F., —F5® andVv' —v 2, in SKV' evaluation you have:

ks R R (A
dt

= " EQ.11.1.1.31
And finally:
Yi=M _1(Fé.¢ - Fifn) EQ.11.1.1.32
& )
Yo—av 2 —i(Vo—Vé “)
V= i EQ.11.1.1.33
1+a—
2
dt dt
+— t—
vV 2=v 2 +)dt EQ.11.1.1.34

The three approaches available in RADIOSS are Dym&melaxation (/DYREL), Energy Discrete Relaxation
(/KEREL) and Rayleigh Damping (/DAMP). ReferRADIOSS Example Manual for application examples.

11.1.1 Acceleration conver gence

For every method, an acceleration of the convergémcthe static solution is desirable. The condiarg step is
one of the more usual methods. In fact, in quadiestinalysis, the duration of the study is propodl to the
maximum period of the structure. The total numbiec@nputation cycles is then proportional to thgord/dt

where T is largest period of the structure ahthe time step. The number of time steps neceseamach the

static solution is minimal if all the elements hate same time step. An initial given time stAf, can be

obtained by increasing or decreasing the densisach element. The constant nodal time step optisures a
homogenous time step over the structure. Howevesimal static problems the change is expected iz,
but one may think of increasing the density of élement which gives the critical time step in saclay that

At =At,.

11.2 Static solution by implicit time-integration

The static behavior of many structures can be clenized by a load-deflection or force-displacenresponse.
If the response plot is nonlinear, the structurbaér is nonlinear. From computational point oéwithe
resolution of a nonlinear problem is much more clexpvith respect to the linear case. However, the of
relatively recent resolution methods based on sp#gative techniques allows saving substantialljpemory.
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11.2.1 Linear static solver

A linear structure is a mathematical model charactd by a linear fundamental equilibrium path ff
possible choices of load and deflection variabléss implies that:

* The response to different load systems can beraiddly superposition,

* Removing all loads returns the structure to therefce position.

The requirements for such a model to be applicatde
» Perfect linear elasticity for any deformation,
* Infinitesimal deformation,
* Infinite strength.

Despite of obvious physically unrealistic limitaig the linear model can be a good approximatiopoofions
of nonlinear response. As the computational mettiodinear problems are efficient and low cost, R®SS
linear solvers can be used to find equilibrium obsj-linear systems. The Preconditioned Conjugataliént
method is the iterative linear solver availableRIADIOSS. The algorithm enables saving a lot of menfor
usual application of RADIOSS as a sparse storaghodds used. This means that only the non-zerndesf
the global stiffness matrix are saved. In additithe symmetry property of both stiffness and prelit@ning
matrices is worthwhile to save memory.

The performance of conjugate gradient method depéighly to the preconditioning method. Severalimy
are available in RADIOSS using the card /IMPL/SOLVThe simplest method is a so-called Jacobi meitod
which only the diagonal terms are taken into actotihis choice allows saving considerable memorgcep
however, the performance may be poor. The incompleholeski is one of the best known effective
preconditioning methods. However, it can resulh@gative pivots in some special cases even if tiffeess
matrix is definite positive. This results a low gengence of PCG algorithm. The problem can belveddby
using a stabilization method as described in [1BBjally, the Factored Approximate Inverse methad/be the
best choice which is used by default in RADIOSS.

11.2.2 Nonlinear static solver

As explained in the beginning of this chapter, alim@ar behavior is characterized by a nonlineadio
deflection diagram callegath. The tangent to an equilibrium path may be forgnalewed as the limit of the
ratio force increment on displacement increments Tib the definition of a stiffness or more prebisthe
tangent stiffness related to a given equilibriugtest The reciprocal ratio is called flexibility. &tsign of the
tangent stiffness is closely associated with theikty of an equilibrium state. A negative stifBteis necessary
associated with unstable equilibrium. A positiviffrséss is necessary but not sufficient for staili

The problem of nonlinear analysis can be viewethasof minimising the total potential enerdy which is a
function of the total displacemeKt A truncated Taylor series then leads to:

0°M
ox?

M, (X+oX)= I'IO(X)+a—néX +%a><T

X +... EQ.11.2.2.1
0X

orl
where the subscriptsand 0 denote respectively final and initial coofations. The term& can be identified

as the out-of-balance forces or gradi€ntof the total potential energy which is the diffiece between the
2

internal force vectoFi,; and the external force vecteg:. The term describes the tangent stiffness matrix

X 2
K. The principle of minimum energy and the equilifoni of stable state give:

a1 =n,(X+dx)-ny(X)=0 EQ.11.2.2.2
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which is implied in EQ. 11.2.2.1:
KX =F,(X) -F, (X) EQ.11.2.2.3
The tangent matrix Kshould be defined positive at the equilibrium pdon stable case:

X'K X >0 EQ.11.2.2.4

EQ. 11.2.2.3 can handle the solution of the noalingoblem when an incremental method is used.sbhéion
methods are generally based on continuous increend corrective phases. The most important abiss
corrective methods concerns the Newton-Raphson adedimd its numerous variants as modified, modified-
delayed, damped, quasi and so forth. All of these/tdn-like methods require access to the pastisaluin the
following section the conventional and modified Newmethods under general increment control amiesiu

11.2.2.1 Newton and modified Newton methods

As you will often prefer to trace the complete ladlection response or in other words, the equilib path, it
is useful to combine the incremental and iterasigkition procedures. You can recall that the puepsdo solve
EQ.11.2.2.3 which can be written in residual form:

R(X, 1) = Fo(X,4) -F(X) =0 EQ.11.2.2.5

with F (X, A1) =F. +AF,_,(X). This equation represents a system of n algelmaidinear equations

depending on only one loading parameter If the loading depends to only one loading vdeabdependent to
the state of deflection, you have:

Fot X A) = AR, (X) EQ.11.2.2.6

Several techniques are available to resolve EQ.A.5. In some situations, the parameferis fixed, and the
equations are resolved to determine n componerXsiforder to verify EQ. 11.2.2.5. In this case, thehnique
is calledload control method. Another technique calléibplacement control consists in fixing a component of
X and searching fod and ‘n-1' other components of displacement veltorA generalization of displacement
control technique will enable to imply several camgnts of displacement vector by using an Euclidiamm.
The method is calledrc-length control and intended to enable solution algorithms to pess points (i.e.
maximum and minimum loads). The techniques makiogsible to obtain the load-deflection curve by ifivgd
point by point the solution are callpidoting techniques.

When the piloting technigue is chosen for a giveepsthe associated solution is obtained by aratiter
resolution of so-called Newton-Raphson methodstekation i, the residual vect®t' is:

R' =F, (X" 1),-F.(X") EQ.11.2.2.7
A correctionAX and AA can be considered with:
. . | 0R i OR ! EQ
i+l i .
RT=R J{a_x} AX {6_/1} M 11228
Combining EQ.11.2.2.8 with EQ. 11.2.2.7, youobtain:

KLAX-F AA=R' EQ.11.2.2.9

ext’

asR™ =0 and:

Xi+1 :Xi +AX
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A=+ AA EQ.11.2.2.10

The tangent matri>KTi is obtained by assembling the elementary matrlqeis It corresponds to:

i _ 0k, OF,
= -—= EQ.11.2.2.11

— int

T X oX

Using load control technique, the standard Newtapfigon method resolves EQ. 11.2.2.9 to EQ. 112131
applying a known load incrememhA as illustrated in Figure 11.2.1. The tangent rraisi updated and
triangulized at each iteration. This insures a gai@ciconvergence to exact solution.

Figure 11.2.1 Standard Newton-Raphson resolution in the ca$eadf control technique

AF
iteration:
I KTi
AF =0 F
F.=AF
X, AX ‘ X

Figure 11.2.2 Modified Newton-Raphson resolution in the caseafl control technique

AF
itega\tions
K:
AF =0AF
F =AF
X, AX, X
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However, it is possible to save computation timéciwidepends on the size of the problem and on ¢lgee@ of
the nonlinearity of the problem. The method is exlimodified Newton-Raphson which is based on the
conservation of the tangent matrix for all iterasqFigure 11.2.2). This method can also be concbimiéh the
acceleration technigues kse-search explained in the following section.

The convergence criteria may be based on Euclidaam of residual forces, residual displacementsrargy
where an allowable tolerance is defined.

11.2.2.2 Line search method to optimise the resolution

The Newton-Raphson resolution of EQ. 11.2.2.9 iegplupdating the variables at each iteration with EQ

11.2.2.10. The new estimation of'** does not satisfy EQ. 11.2.2.9 onlyR** = 0. In order to reduce the
number of iterations the line-search method is u3beé line-search technique is an important featirmost
numerical techniques used in optimisation probleDstailed discussions are given in [104]. The métho
consists in introducing a paramet@r such as:

X" =X+ g AX EQ.11.2.2.12

where @ is obtained to minimize the total potential enemyyto satisfy the principle of virtual works. The
techniques to determin@ use often a Raleigh-Ritz procedure with only onknown parameter.

The principle of virtual work can be written in tgeneral form:

W(X, OX) =K R(X) =0  For all kinematical acceptab® EQ. 11.2.2.13
Considering EQ. 11.2.2.12, write:

X =aAX EQ. 11.2.2.14
and:

W =da AX » R(Xi +aAX)=O for all & EQ.11.2.2.15
Then, @ is determined from:

AX + R(X' +anX)=0 EQ.11.2.2.16
which leads to a three-order polynomial equatiodrirfor elastic materials:

C,+C,a+C,a°+C,a°=0 EQ.11.2.2.17

The coefficients C1, C2, C3 and C4 can be expressadrms of displacements' ¥nd the increment of
displacementddX .

11.2.2.3 Arc length method

To obtain the load-deflection behavior of a stroetuhe load or the displacement of a given pointhe

structure must be parameterized. Up to now, yole liarameterized the load by the timélowever, a single
parameter is not always sufficient to control in @stimum way the time step. On the other hands ihdt

possible to pass limit points with ‘snap-throughdasnap-back’ when using load-controlled or displament-
controlled techniques. This is due to the fact thatincrease in load or in a given displacementmment may
result a dynamic response losing a part of loatedibn curve as shown in Figures 11.2.3 (a) and (b

01-Jan-2017 11
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Figure 11.2.3 Various load-deflection curves and step-by-stdptgm by arc-length method
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branch with the circle about the last soloiti

The tracing of equilibrium branches are quite difft. In arc-length method, instead of incrementihg load
parameter, a measure of the arc length in the atisptent-load parameter space is incremented. $his i
accomplished by adding a controlling parametehéoetquilibrium equations.

The arc-length method was originally introducedRiks [116] and Wempner [117]. Considering a funetio

implying several components of the displacementoreX, the arc-length method consists in determining in
each step the Euclidian norm of the increas€ in

f=(x"-x"{x"-x"}-(as,) =0 EQ.11.2.2.18
This leads to:
(x-xm){x"-x"}=(as,f EQ.11.2.2.19

And  a(AA) +b(AA)+c=0 EQ. 11.2.2.20
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With:

a=(AX, {AX,} fax} =[] {F)
b=2(AX, )V} ; {v}

{ax }+{x"-x"}
c=(Vih)-(as,

In each of the Newton-Raphson iterations, EQ. 212D. must be resolved to select a real root. Hetheno root,
AS, should be reduced. The most closed root to thestdstion is retained in the case of two real soot

Figure 11.2.3(c) illustrates the intersection & #gguilibrium branch with the circle about the lssiution.
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