Schur decomposition. |
||
Syntax |
U, T = schur(A) U, T = schur(A, flag) |
|
Argument |
Name |
Description |
A |
A square matrix (n-by-n); real or complex. |
|
flag |
A string; 'real' (default) or 'complex'. |
|
Outputs |
Name |
Description |
U |
Unitary matrix. |
|
T |
Upper triangular matrix. |
|
Example |
Syntax |
|
H = [-28 -10 -26; -150 -51 -155; 538 181 547;]; U,T = schur(H); print("U = ", U); print("T = ", T); |
||
Result |
||
U = [Matrix] 3 x 3 -0.044641 0.78892 0.61288 -0.27273 0.58056 -0.76718 0.96105 0.2014 -0.18924 T = [Matrix] 3 x 3 470.65 665.11 90.557 0 -1.3228 0.36103 0 -3.9104 -1.3228 |
||
Comments |
The schur function computes the Schur decomposition of A defined by The elements on the main diagonal of this matrix T are 1x1 or 2x2 blocks. If A is complex, T returned is an upper triangular matrix in complex Schur form. By default, with a real matrix, it is a real Schur decomposition. To force a complex decomposition, the flag complex can be added. The Schur decomposition can usually be used to compute the eigenvalues of a square matrix. The schur function uses LAPACK functions (dgees, zgees). |
|
See Also: |