HyperMath

SVD

SVD

Previous topic Next topic No expanding text in this topic  

SVD

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Singular value decomposition of a general real matrix.  The matrix is decomposed as U∙S∙VT.

Syntax

U,S,V = SVD(M)

Argument

Name

Description

 

M

A general m by n matrix of real values.

Outputs

Name

Description

 

U

An m by m orthogonal matrix.

 

S

An m by n diagonal matrix.

 

V

An n by n orthogonal matrix.

Example

Find the singular value decomposition of a matrix.

 

Syntax

 

M = [1,2;3,4;5,6]; // Given matrix

u,s,v = SVD(M);

 

Result

 

u =  0.22985        -0.88346         0.40825

      0.52474        -0.24078         -0.8165

      0.81964          0.4019         0.40825

 

s =  9.5255     0

      0          0.5143

      0          0

 

v =  0.61963    0.78489

      0.78489   -0.61963

Comments

Every matrix has a singular value decomposition.

See Also:

Csky

LU