HyperWorks Solvers

/MAT/LAW48 (ZHAO)

/MAT/LAW48 (ZHAO)

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW48 (ZHAO)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW48 - Zhao Material Law

Description

This law describes the Zhao material law used to model an elasto-plastic strain rate dependent materials. The law is applicable only for solids and shells. The global plasticity option for shells (N=0 in shell property keyword) is not available in the actual version.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW48/mat_ID/unit_ID or /MAT/ZHAO/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

A

B

n

Chard

C

D

m

c

k

Fcut

 

 

 

 

 

 

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

E

Young’s modulus

(Real)

Poisson’s ratio

(Real)

 

A

Plasticity yield stress

(Real)

B

Plasticity hardening parameter

(Real)

n

Plasticity hardening exponent

Default = 1.0  (Real)

 

Chard

Plasticity Iso-kinematic hardening factor

Default = 0.0  (Real)

= 0: hardening is full isotropic model

= 1: hardening uses the kinematic Prager-Ziegler model

= between 0 and 1: hardening is interpolated between the two models

 

Plasticity maximum stress

Default = 1030  (Real)

C

Relative strain rate coefficient

Default = 1.0  (Real)

D

Strain rate plasticity factor

Default = 0.0  (Real)

 

m

Relative strain rate exponent

Default = 1.0  (Real)

 

c

Strain rate coefficient

Default = 0.0  (Real)

 

k

Strain rate exponent

Default = 1.0  (Real)

 

Reference strain rate

(Real)

Fcut

Cutoff frequency for strain rate filtering

Default = 0.0  (Real)

Failure plastic strain

Default = 1030  (Real)

 

Tensile failure strain 1

Default = 1030  (Real)

 

Tensile failure strain 2

Default = 1030  (Real)

 

hmtoggle_plus1Example (Metal)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                  g                  mm                  ms

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/LAW48/1/1

metal

#              RHO_I

                .008

#                  E                  NU

              200000                  .3

#                  A                   B                   n              C_hard           SIGMA_max

                 145                 550                 .42                   1                   0

#                  C                   D                   m                   c                   k

                  35                  47                  .3                 185                  .3

#         EPS_rate_0                Fcut

                 .05                   0

#            EPS_max              EPS_t1              EPS_t2

                   0                   0                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.The stress-strain function is based on the formula published by Zhao:

Where, is the plastic strain and is the strain rate.

2.Except for the strain rate formulation, the plasticity curve is strictly identical to a Johnson-Cook model:

mat_law48

However, compared to Johnson-Cook, the Zhao law allows a better approximation of a nonlinear strain rate dependent behavior.

3.Yield stress should be strictly positive.
4.The hardening exponent n must be less than 1.

clip0079

5.If , the term , and the equation is:
6.The strain rate filtering is used to smooth strain rate. It is only available for shell and solid elements.
7.When reaches in one integration point, then based on the element type:
Shell elements:
The corresponding shell element is deleted.
Solid elements:
The deviatoric stress of the corresponding integral point is permanently set to 0, however, the solid element is not deleted.
8.If ( is the largest principal strain), the stress is reduced as follows:

9.If , the stress is reduced to 0 (but the element is not deleted).

See Also:

Material Compatibility

Law Compatibility with Failure Model

/MAT/LAW48 in Theory Manual