HyperWorks Solvers

46.1 - Lagrange Formulation

46.1 - Lagrange Formulation

Previous topic Next topic Expand/collapse all hidden text  

46.1 - Lagrange Formulation

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

 

Title

Cylinder Expansion Test with Lagrange formulation

ex46_1

Number

46.1

Brief Description

Detonation is initiated at the bottom of the explosive. Radial expansion of the cylinder is measured and compared to experimental data.

Keywords

Lagrange formulation
Jones Wilkins Lee EOS (/MAT/JWL)
Hydrodynamic Johnson-Cook Material (/MAT/LAW4)
Gruneisen equation of state (/EOS/GRUNEISEN)
Brick elements

RADIOSS Options

Axisymmetrical analysis (/ANALY)
Solid property (/PROP/SOLID)
Boundary condition (/BCS)
Detonation plan (/DFS/DETPLAN)
Time history on node (/TH/NODE)

Input File

Cylinder Test: <install_directory>/demos/hwsolvers/radioss/46_TNT_Cylinder_Expansion_Test/Lagrange/*

Technical / Theoretical Level

Advanced

Overview


Physical Problem Description

The purpose of this example is to show how to simulate the cylinder expansion test and compare the simulation result to experimental data.

A OFHC copper cylinder (1.53cm diameter, 0.26cm thickness, 30.5cm height) is filled with an explosive (TNT). Detonation is initiated at the bottom of the explosive. Radial expansion is measured at a length of 8*D cm.

Since this problem is axisymmetric, only a quarter of the cylinder is modeled.

ex46_problem_description

Fig 1: Problem description for cylinder test

Units: cm, µs, g, Mbar

The TNT material uses Jones Wilkins-Lee Material (/MAT/JWL) and Lagrange formulation with the following characteristics:

Initial density = 1.63
A = 3.7121
B = 0.0323
R1 = 4.15
R2 = 0.95
W1 = 0.3

Chapman Jouget parameters enable detonation time to compute and burn fraction evolution:

Detonation velocity D = 0.693
Chapman Jouguet pressure PCJ = 0.21
Detonation energy E0 = 0.07

 

hmtoggle_plus1RADIOSS Card (TNT)

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/JWL/2

TNT

#            RHO_I

               1.63                   0

#                 A                   B                  R1                  R2               OMEGA

             3.7121               .0323                4.15                 .95                  .3

#                 D                P_CJ                  E0

               .693                 .21                 .07

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

 

Using Hydrodynamic Johnson-Cook material law (/MAT/LAW4), the copper cylinder material has the following characteristics:

Initial density = 8.96
E-Module = 1.24
Poisson = 0.35
A = 0.9e-3
B = 0.292e-2
N = 0.31
symbolmax = 0.0066
C = 0.025
E0 = 1e-5
M = 1.09
density0Cp = 3.461e-3
Tmelt = 1656

The Gruneisen equation of state (/EOS/GRUNEISEN) is used for copper with the following characteristics:

C = 0.394
S1 = 1.489
Y0 = 1.97
a = 0.47
E0 = 8.96

 

hmtoggle_plus1RADIOSS Card (Copper)

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/HYD_JCOOK/1

Copper

#             RHO_I

               8.96

#                E0                  nu

               1.24                 .35

#                 A                   B                   n              epsmax              sigmax

             .9E-03            .292E-02                 .31                   0              0.0066

#              Pmin

             -1.E30

#                 C           EPS_DOT)0                   M               Tmelt                Tmax

            .25E-01              .1E-05                1.09              1656.0                1e30

#             RHOCP

          .3461E-04

/EOS/GRUNEISEN/1

Copper

#                  C                  S1                  S2                  S3

                .394               1.489                   0                   0

#             GAMMA0               ALPHA                  E0               RHO_0

                1.97                 .47                   0                8.96

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

 

Analysis, Assumptions and Modeling Description


Modeling methodology

A 3D mesh is made of brick elements. The element size is approximately of 0.035 cm x 0.035 cm x 0.035 cm.

The mesh is dragged along the z direction (z = 30.5 cm). It is important to have no discontinuity in element volume in order to ensure a good propagation of detonation wave and shock wave.

ex46_model_mesh

Fig 2: Model mesh

RADIOSS Options Used

Due to the symmetries of the model, a quarter of the cylinder is modeled. Boundary conditions are set on the yOz plan at x = 0 (Tx = 0) and on the xOz plan at y = 0 (Ty = 0) to simulate the symmetry.

A planar detonation wave is defined at the bottom of the cylinder.

In order to plot the curve of radial expansion, displacements of node n 201 520 at z = 24.48 cm on the outer wall of the copper cylinder are saved in time history. It corresponds to L/D=8 in agreement with experimental protocol.

ex46_equation

A scale factor of 0.5 (on time step for all elements) is used for this type of application.

In solid properties, qa and qb default values are used. These values have to be changed depending of the formulation (ALE, Euler).

Isolid is set to 14 for copper solid properties.

 

hmtoggle_plus1RADIOSS Card (TNT)

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/PROP/SOLID/2

TNT

#  Isolid    Ismstr               Icpre               Inpts    Itetra    Iframe                  dn

        0         0                   0                   0         0         0                   0

#               q_a                 q_b                   h            LAMBDA_V                MU_V

                  0                   0                   0                   0                   0

#            dt_min   istrain      IHKT

                  0         0         0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1RADIOSS Card (Copper)

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/PROP/SOLID/1

Copper

#  Isolid    Ismstr               Icpre               Inpts    Itetra    Iframe                  dn

        0         0                   0                   0         0         0                   0

#               q_a                 q_b                   h            LAMBDA_V                MU_V

                  0                   0                   0                   0                   0

#            dt_min   istrain      IHKT

                  0         0         0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

 

Simulation Results and Conclusions


Curves and Animations

The two following diagrams display the pressure and density in the cylinder and the explosive.

ex46_pressure_dist

Fig. 3: Pressure distributed in copper and TNT at time = 13µs.

ex46_density

Fig. 4: Density distributed in copper and TNT at time = 13 µs.

The following diagram shows the comparison between the experimental and simulation measurement of radial expansion.

ex46_comparison

Fig. 5: Comparison between experimental results and simulation results

Conclusion

Good correlation between experimental and simulation results. A thinner meshing could improve the correlation between simulation and experimental curves.

Elapsed time for simulation: t = 11 441 s, 8514 cycles, (4 cpu intel core i7 Q 840 @ 1.87 GHz).

As the model is Lagrangian, the mesh becomes very distorted at the end of the simulation to obtain a proper mesh, it is possible to use the Euler method.

 

References

[1] Adiabatic Expansion of high explosive detonation products, LANL, Wilkins (1969)

[2] A Constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Gordon R. Johnson, William H. Cook