HyperWorks Solvers

Ityp = 3

Ityp = 3

Previous topic Next topic Expand/collapse all hidden text  

Ityp = 3

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/B-K-EPS - ITYP=3 - Boundary Conditions Material for Flow Analysis with Turbulence

Description

This law enables to model a non-reflecting boundary (NRF). Input card is similar to /MAT/LAW11 (BOUND), but introduces two new lines to define turbulence parameters.

law11_ityp3

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/B-K-EPS/mat_ID

mat_title

 

 

 

 

 

 

Ityp

 

Psh

 

 

 

 

 

 

Ityp =3 - Non-Reflecting Boundary

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

 

 

c

lc

 

 

 

 

Blank Format

Blank Format

Blank Format

fct_IDk

fct_IDe

 

 

 

 

csymbol_u

Pr / Prt

 

 

Blank Format

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density (Comment 3)

(Real)

Reference density used in E.O.S (equation of state)

Default (Real)

Ityp

Boundary condition type (Comment 1)

(Integer)

= 0: gas inlet (from stagnation point data)

= 1: liquid inlet (from stagnation point data)

= 2: general inlet/outlet

= 3: non-reflecting boundary

 

Psh

Pressure shift (Comment 2)

(Real)

symbol_Pa

c

Outlet sound speed (Comment 1)

(Real)

fail_lad_SI_k

lc

Characteristic length (Comment 1)

(Real)

symbol_m3

Initial turbulent energy

(Real)

symbol_J

Initial turbulent dissipation

(Real)

symbol_J

fct_IDk

(Optional) Function identifier for turbulence modeling

(Integer)

= 0:

> 0:

 

fct_IDe

(Optional) Function identifier for energy

(Integer)

= 0:

= n:

 

csymbol_u

Turbulent viscosity coefficient

Default = 0.09  (Real)

 

Diffusion coefficient for k parameter

Default = 1.00  (Real)

 

Diffusion coefficient for ε parameter

Default = 1.30  (Real)

 

Pr / Prt

Ratio between Laminar Prandtl number (Default 0.7) and turbulent Prandtl number (Default 0.9).

(Real)

 

hmtoggle_plus1Example (Gas)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/B-K-EPS/5

GAS OUTLET (unit: kg_m_s)

#              RHO_I

               .3828

#     ITYP                           Psh

         3                           0.0

#                                      c                  lc

                                    605                 0.3

#blank line

 

#blank line

 

#blank line

 

#             Rho0k0            Rho0Eps0     fct_k   fct_eps

                  20                   0         0         0

#                Cmu             Sigma-k       Sigma-epsilon              Pr/Prt

                   0                   0                   0                   0

#blank line

 

/ALE/MAT/5

#     Modif. factor.

                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#enddata

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.Non-Reflecting Boundary formulation is based on Bayliss & Turkel [1]. The objective is to impose a mean pressure which fluctuate with rapid variations of pressure and velocity:

Pressure in the far field Psymbol_inf is imposed with a function of time. The transient pressure is derived from Psymbol_inf, the local velocity field V and the normal of the outlet facet:

density, energy, temperature, turbulent energy and dissipation are imposed with a function of time as in Ityp = 2
if the function number is 0, the neighbor element value is used to respect continuity
acoustic impedance will be
typical length lc is used to relax the effective pressure towards its imposed value. It should be large compared to the highest wave length of interest in the problem. The relaxation term acts as high pass filter whose frequency cut-off is:
 

 
Where, sound speed c and characteristic length lc are two required parameters (non zero).
2.The PSH parameter enables shifting the output pressure which also becomes P-PSH. If using PSH=P(t=0), the output pressure will be symbol_dp, with an initial value of 0.0.
3.With thermal modeling, all thermal data (, …) can be defined with /HEAT.
4.It is not possible to use this boundary material law with multi-material ALE laws 37 (BIMAT) and 51 (MULTIMAT).
hmtoggle_plus1Reference

[1] A. Bayliss, E. Turkel, “Outflow Boundary Condition for Fluid Dynamics”, NASA-CR-170367, Institute for Computer Application in Science and Engineering, August 7, 1980

See Also:

Material Compatibility