Block Format Keyword
/MAT/B-K-EPS - ITYP=2 - Boundary Conditions Material for Flow Analysis with Turbulence
Description
This law enables to model a material inlet/outlet by directly imposing its state. Input card is similar to /MAT/LAW11 (BOUND), but introduces two new lines to define turbulence parameters.

Format
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
(7)
|
(8)
|
(9)
|
(10)
|
/MAT/B-K-EPS/mat_ID
|
mat_title
|

|

|
|
|
|
|
|
|
Ityp
|
|
Psh
|
FscaleT
|
|
|
|
|
Ityp =2 – General Inlet/Outlet
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
(7)
|
(8)
|
(9)
|
(10)
|
Blank Format
|
fct_IDρ
|
|
|
|
|
|
|
|
|
|
fct_IDp
|
|
P0
|
|
|
|
|
|
|
fct_IDE
|
|
E0
|
|
|
|
|
|
|

|

|
fct_IDk
|
fct_IDε
|
|
|
|
|
c
|

|

|
Pr / Prt
|
|
|
fct_IDT
|
fct_IDQ
|
|
|
|
|
|
|
|
|
Field
|
Contents
|
SI Unit Example
|
mat_ID
|
Material identifier
(Integer, maximum 10 digits)
|
|
mat_title
|
Material title
(Character, maximum 100 characters)
|
|

|
Initial density (Comment 3)
(Real)
|

|

|
Reference density used in E.O.S (equation of state)
Default (Real)
|

|
Ityp
|
Boundary condition type (Comment 1)
(Integer)
= 0: gas inlet (from stagnation point data)
= 1: liquid inlet (from stagnation point data)
= 2: general inlet/outlet
= 3: non-reflecting boundary
|
|
Psh
|
Pressure shift (Comment 2)
(Real)
|

|
FscaleT
|
(Optional) Time scale factor (Comment 3)
(Real)
|
|
fct_IDρ
|
(Optional) Function identifier for boundary density (Comment 3)
(Integer)
= 0: 
> 0: 
|
|
fct_IDp
|
(Optional) Function identifier for boundary pressure (Comment 3)
(Integer)
= 0: 
> 0: 
|
|
P0
|
Initial pressure (Comment 3)
(Real)
|

|
fct_IDE
|
Function identifier for boundary energy (Comment 3)
(Integer)
= 0: 
> 0: 
|
|
E0
|
Initial energy (Comments 3 and 6)
(Real)
|

|

|
Initial turbulent energy
(Real)
|

|

|
Initial turbulent dissipation
(Real)
|

|
fct_IDk
|
(Optional) Function identifier for turbulence modeling
(Integer)
= 0: 
> 0: 
|
|
fct_IDε
|
(Optional) Function identifier for energy
(Integer)
= 0: 
= n: 
|
|
c
|
Turbulent viscosity coefficient
Default = 0.09 (Real)
|
|

|
Diffusion coefficient for k parameter
Default = 1.00 (Real)
|
|

|
Diffusion coefficient for ε parameter
Default = 1.30 (Real)
|
|
Pr / Prt
|
Ratio between Laminar Prandtl number (Default 0.7) and turbulent Prandtl number (Default 0.9).
(Real)
|
|
fct_IDT
|
Function identifier for inlet temperature
(Integer)
= 0: T = Tadjacent
= n: 
|
|
fct_IDQ
|
Function identifier for inlet heat flux
(Integer)
= 0: no imposed flux
= n: 
|
|
|
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/B-K-EPS/3
GAS INLET (unit: kg_m_s)
# RHO_I
.3828
# ITYP Psh Fscale_T
2
#blank line
# fct_RHO
1
# fct_P P_0
0
# fct_E E_0
1 253300
# Rho0k0 Rho0Eps0 fct_k fct_eps
20 0 1 0
# Cmu Sigma-k Sigma-epsilon Pr/Prt
0 0 0 0
# fct_T fct_Q
/ALE/MAT/3
# Modif. factor.
0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1
CST
# X Y
0 1
1.0E20 1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
|
1. | Provided state is directly imposed to inlet boundary elements. This leads to the following inlet state: |




With this formulation, you may impose velocity on boundary nodes to be consistent with physical inlet velocity (/IMPVEL). /MAT/LAW11 – ITYP=0 and 1, are based on material state from stagnation point, where you do not need to imposed an inlet velocity.
2. | The PSH parameter enables shifting the output pressure which also becomes P-PSH. If using PSH=P(t=0), the output pressure will be , with an initial value of 0.0. |
3. | If no function is defined, then related quantity remains constant and set to its initial value. However, all input quantities can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using FscaleT parameter which leads to use f (Fscalet * t) instead of f(t). |
4. | With thermal modeling, all thermal data ( , …) can be defined with /HEAT. |
5. | It is not possible to use this boundary material law with multi-material ALE laws 37 (BIMAT) and 51 (MULTIMAT). |
6. | Specific volume energy E is defined as E = Eint / V, where Eint is the internal energy. It can be output using /TH/BRIC. |
Specific mass energy e is defined as e = Eint / m. This leads to . Specific mass energy e can be output using /ANIM/ELEM/ENER. This may be a relative energy depending on user modeling.
|
See Also:
Material Compatibility