HyperWorks Solvers

/DEQATN

/DEQATN

Previous topic Next topic Expand/collapse all hidden text  

/DEQATN

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Optimization Keyword

/DEQATN – Design Equation Definition

Description

Specifies one or more equations for use in optimization.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/DEQATN/eqn_ID

title

EQN(1); EQN(2); ...

...

EQN(n-1); EQN(n)

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

eqn_ID

Design equation identifier

(Integer > 0)

 

title

Title

(Character, maximum 100 characters)

 

EQN(i)

i-th equation

(Character string)

 

hmtoggle_plus1Example

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/DRESP1/1

u_in

### RTYPE=5: Displacement

### PTYPE=1: Node

### ATTA=1 : Translational displacement in X-direction

### ATTI=103 : 103 is node group identifier is due to PTYPE = 1

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#    RTYPE     PTYPE    REGION      ATTA      ATTB      ATTI

         5         1                   1                 103

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/DRESP1/2

u_out

### RTYPE=5: Displacement

### PTYPE=1: Node

### ATTA=1 : Translational displacement in X-direction

### ATTI=104 : 104 is node group identifier is due to PTYPE = 1

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#    RTYPE     PTYPE    REGION      ATTA      ATTB      ATTI

         5         1                   1                 104

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/DRESP2/4

dresp2

### EQID=1: /DEQATN identifier is 1

### VARTYPE1=3: Indicates the type of variables is 3 (DRESP1)

### ID1=1: first Variable(x) is ID1=1 in DRESP1 (dx in node group 103)

### ID2=2: second Variable(y) is ID2=2 in DRESP1 (dx in node group 104)

#     FUNC      EQID    REGION

                   1

# VARTYPE1       ID1       ID2       ID1       ID2       ID1       ID2       ID1       ID2       ID1

         3         1         2

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/DEQATN/1

deqatn

# EQUATIONS

dm(x,y)=(x+y)/2.

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.Blank characters in the equation have no effect, even within a constant, variable or function name. Lower and upper case letters are equivalent.
2.There must be only one variable at the left-hand side of each equation in any equation card. The variable of the first equation must be followed by an argument listed in the following format:

v1(x1,x2,…,xn) = expression(x1,x2,…,xn);

v2 = expression(x1,x2,…,xn,v1);

vi  = expression(x1,x2,…,xn,v1,v2,…,vi-1);

vn = expression(x1,x2,…,xn,v1,v2,…,vn-1);

where, vi is the variable of equation i. (x1, x2, …, xn) is the argument list for variable v1. (v1,v2,…,vi-1) is the variable list which corresponds to the result of equation 1 through equation i-1.

3.Constants can be specified in a format of either integer or floating point. A floating point number can be in a format of either normal decimal-point format (3.90) or scientific notation (-2.0E-3), which means -2x10-3.

The list of supported mathematical functions is as follows:

One-argument functions

abs(x)absolute value
acos(x)arccosine
acosh(x)hyperbolic arccosine
asin(x)arcsine
asinh(x)hyperbolic arcsine
atan(x)arctangent
atanh(x)hyperbolic arctangent
cos(x)cosine
cosh(x)hyperbolic cosine
exp(x)exponential
log(x)natural logarithm
log10(x)common logarithm
pi(x)multiples of symbol_pi
sin(x)sine
sinh(x)hyperbolic sine
int (x)real to integer conversion
sqrt(x)square root

Two-argument functions

2_arg_funct

Multi-argument functions

deqatn_multi

4.The supported operators are listed below:

Symbol

Meaning

Example

+

binary +

x + y

-

binary -

x - y

*

multiplication

x * y

/

division

x / y

**

power

x ** y

+

unary +

+1.0

-

unary -

-1.0

5.The precedence of mathematical calculations follows the rules of Fortran language. Parenthesis has a higher priority in the order of precedence than the operators listed above. Two consecutive operators are acceptable only if the second one is unary, plus or minus.

Examples of operator precedence:

Expression

Result

2**-3

0.128

1 / 2 + 3

3.5

2*3-4

2.0

-2**3**2

-512.0

2 + -5

-3.0

2 * -5

-10.0

2 - -5

7.0

2/3/4

0.16666666…

2/(3/4)

2.6666666…

6.Functions can be defined in a layered format, for example, min(sin(x1), x2), with no limit on the number of layers.
7.The /DEQATN entry is referenced by /DRESP2 entry.

See Also:

Design Optimization

DEQATN