Block Format Keyword
/LOAD/PFLUID - Applies hydrodynamic pressure on a structural surface
This entry provides a simple way to simulate hydrodynamic fluid pressure on a structure. The fluid pressure is calculated according to the specified fluid velocity, orientation of the structural surface against the fluid vector and the height of the fluid column above the surface of the structure.
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
/LOAD/PFLUID/load_ID/unit_ID |
|||||||||
load_title |
|||||||||
surf_ID |
sens_ID |
|
|
|
|
|
|
|
|
fct_hsp |
|
Ascalex_hsp |
Fscaley_hsp |
|
|
|
|
||
Dir_hsp |
frahsp_ID |
|
|
|
|
|
|
|
|
fct_pc |
|
Ascalex_pc |
Fscaley_pc |
|
|
|
|
||
fct_vel |
|
Ascalex_vel |
Fscaley_vel |
|
|
|
|
||
Dir_vel |
fravel_ID |
|
|
|
|
|
|
|
|
|
In this example, /LOAD/PFLUID is used to simulate wind (with velocity 15[mm/ms]) effect on textile.
#RADIOSS STARTER #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /UNIT/1 unit for load # MUNIT LUNIT TUNIT kg mm ms #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /LOAD/PFLUID/1/1 Wind effect # surf_ID sens_ID 8 0 # fct_hsp Ascalex_hsp Fscaley_hsp 0 0 0 # Dir_hsp frahsp_ID 0 # fct_pc Ascalex_pc Fscaley_pc 2 0 2 # fct_vel Ascalex_vel Fscaley_vel 3 0 15 # Dir_vel fravel_ID Y 0 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /FUNCT/2 Air density # X Y 0 1.2E-9 1000 1.2E-9 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /FUNCT/3 Air velocity # X Y 0 1 1000 1 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #ENDDATA |
Where, is the fluid density g is the acceleration due to gravity h is the height of the water column above an element of the structural surface V(t) is the relative fluid velocity which is normal to the element of the structural surface D(t) is the drag coefficient for complete structural surface. The value of the drag coefficient depends on the shape of the cross-section of the body in the direction of fluid flow (Figure 1). Figure 1: Drag coefficient values for different shapes
Where, is the specified fluid velocity (fct_vel(t)). If not defined (=0), the effect of fluid velocity is not accounted for (V(t) =0) is the element velocity is the element normal |
See Also: