HyperWorks Solvers

/MAT/LAW79 (JOHN_HOLM)

/MAT/LAW79 (JOHN_HOLM)

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW79 (JOHN_HOLM)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW79 - Johnson-Holmquist Model [1][]

Description

This material law describes the behavior of brittle materials, such as ceramics and glass. The implementation is the second Johnson Holmquist model: JH-2

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW79/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

G

 

 

 

 

 

 

 

a

b

m

n

 

c

 

 

 

 

T

HEL

PHEL

 

 

 

 

D1

D2

 

 

 

 

 

K1

K2

K3

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

Reference density used in E.O.S (equation of state)

Default  =  (Real)

G

Shear modulus

(Real)

a

Intact normalized strength constant (Comment 1)

(Real)

 

b

Fractured normalized strength constant (Comment 1)

(Real)

 

m

Fractured strength pressure exponent (Comment 1)

(Real)

 

n

Intact strength pressure exponent (Comment 1)

(Real)

 

c

Strain rate coefficient

= 0: no strain rate effect (default)

(Real)

 

Reference strain rate

Usually = 1  (Real)

Maximum normalized fractured strength

Default = 1030  (Real)

 

T

Maximum pressure tensile strength

Default = 1030  (Real)

HEL

Hugoniot elastic limit

(Real)

PHEL

Pressure at Hugoniot elastic limit

(Real)

D1

Damage constant (Comment 2)

(Real)

 

D2

Damage exponent (Comment 2)

(Real)

 

K1

Bulk modulus

(Real)

K2

Pressure coefficient (Comment 3)

(Real)

K3

Pressure coefficient (Comment 3)

(Real)

Bulking pressure coefficient

(Real)

 

hmtoggle_plus1 Input Example

 

B4C   [2]

Al2O3   [1]

2510

3700

G  

197

90

a

0.927

0.93

b

0.70

0.31

m

0.85

0.6

n

0.67

0.6

c

0.005

0

0.2

-

T  

0.26

0.2

HEL

19.0

2.8

PHEL

8.71

1.46

D1

0.001

0.005

D2

0.5

1

K1  

233

131

K2  

-593

0

K3  

2800

0

1

1

hmtoggle_plus1Example (Concrete)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                  g                  mm                  ms

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/LAW79/1/1

concrete

#              RHO_I               RHO_0

               .0037                   0

#                  G

               90160

#                  a                   b                   m                   n

                 .93                   0                   0                  .6

#                  c                EPS0          SIGMA_FMAX

                   0                .001               1E-30

#                  T                 HEL                PHEL

                 200                2790                1460

#                 D1                  D2

                   0                   0

#                 K1                  K2                  K3                BETA

              130950                   0                   0                   1

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.The equation describing the normalized equivalent stress is:

with the equivalent stress of the intact material:

and the equivalent stress of the failed material:

Stress are normalized to the stress at the Hugoniot elastic limit:

and pressure are normalized to PHEL:

2.The accumulated damage is:

where, the plastic strain to failure is:

3.The Equation of state is:

where, the bulking pressure is computed as a function of the elastic energy loss converted into potential hydrostatic energy:

4.Time history available output:

USR3: Damage D

USR4: Bulking Pressure

USR5: Yield Stress

hmtoggle_plus1References

[1] An improved computational constitutive model for brittle materials, G.R. Johnson, T.J.Holmquist, American Institute of Physics, 1994.

[2] Response of boron carbide subjected to large strains, high strain rates, and high pressures G.R.Johnson, T.J.Holmquist, Journal of Applied Physics, Volume 85, #12, June 1999.

See Also:

Material Compatibility

Law Compatibility with Failure Model