HyperWorks Solvers

/MAT/LAW38 (VISC_TAB)

/MAT/LAW38 (VISC_TAB)

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW38 (VISC_TAB)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW38 - Visco-Elastic Foam Tabulated Material

Description

This law describes the visco-elastic foam tabulated material and can only be used with solid elements.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW38/mat_ID/unit_ID or /MAT/VISC_TAB/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E0

Iflag

Itota

H

RD

KR

KD

Kair

NP

FscaleP

 

 

 

 

 

 

P0

RP

Pmax

 

 

fct_IDul

 

Fscaleunload

a

b

Nfunct

 

CUToff

Iinsta

 

 

 

 

 

Efinal

Visc

Tol

Fscale1

Fscale2

Fscale3

Fscale4

Fscale5

fct_ID1L

fct_ID2L

fct_ID3L

fct_ID4L

fct_ID5L

 

 

 

 

 

fct_ID1ul

fct_ID2ul

fct_ID3ul

fct_ID4ul

fct_ID5ul

 

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

E0

Minimum tension modulus, used for interface and time step computation

(Real)

Maximum Poisson’s ratio in tension

Default = 10-30  (Real)

 

Maximum Poisson’s ratio in compression

(Real)

 

Exponent for Poisson’s ratio computation

(Real)

 

Iflag

Analysis formulation type flag (Comment 4)

(Integer)

= 0: viscoelasticity is computed in each principal stress direction

= 1: behavior is linear in both tension and compression

 

Itota

Incremental formulation flag

Default = 0  (Integer)

Total: 0 or 1

= 0: behavior in tension is linear

= 1: behavior in tension is read from stress curves

INCREMENTAL: 2 or 3

= 2: behavior in tension is linear

= 3: behavior in tension is read from stress curves

 

Relaxation rate for unloading

Default = 10-30  (Real)

 

H

Hysteresis coefficient for unloading

Default = 1.0  (Real)

 

RD

Damping factor on strain rate

Default = 0.5  (Real)

 

KR

Recovery model flag for unloading (hysteresis loop)

Default = 0  (Integer)

= 0: No stress recovery on unloading (unloading curve=loading curve)

= 1: Stress recovery on unloading is computed as:

= 2: Stress recovery on unloading is computed as:

Where, and are current internal energy and maximum internal energy, respectively.

(Comment 6)

 

KD

Decay model flag, hysteresis type

Default = 0  (Integer)

= 0: Decay is active during loading and unloading

= 1: Decay is only active during loading

= 2: Decay is active during unloading

 

clip0556

Integration coefficient for instantaneous module update

Default = 0.67  (Real)

 

Kair

Air content computation flag (Comment 7)

Default = 0  (Integer)

= 0: No confined air content

= 1: Confined air content computation active

= 2: Read hydrostatic curve (number defined by NP). The difference between pure compression and hydrostatic are taken into account.

 

NP

Pressure curve number (pressure vs. relative volume)

(Integer)

 

FscaleP

Pressure curve scale factor

(Real)

P0

Atmospheric pressure

(Real)

RP

Relaxation rate of pressure

Default = 10-30  (Real)

 

Pmax

Maximum air pressure

Default = 1030  (Real)

Porosity (density of foam/density of polymer)

(Real)

 

fct_IDul

Unloading function identifier

> 0: when unloading strain rate is equal to the static one, unloading will use only the function fct_IDul.

(Integer)

 

Fscaleunload

Unloading function scale factor

Default = 1.0  (Real)

Unloading strain rate (must be greater than )

(Real)

a

Exponent for stress interpolation

Default = 1.0  (Real)

 

b

Exponent for stress interpolation

Default = 1.0  (Real)

 

Nfunct

Number of functions defining rate dependency (five or less)

(Integer)

 

CUToff

Tension cutoff stress

Default = 1030  (Real)

Iinsta

Material instability control flag

Default = 0  (Integer)

= 0: No material instability control

= 1: Material instability control

 

Efinal

Maximum tension modulus

Default = E0  (Real)

Absolute value of strain at final modulus

Default = 1.0  (Real)

 

Modulus interpolation coefficient

Default = 1.0  (Real)

 

Visc

Maximum viscosity (Comment 11)

Default = 1030  (Real)

symbol_PaS

Tol

Tolerance on principal direction update

Default = 1.0  (Real)

 

Fscalei

Scale factor for curve i

(Real)

Engineering strain rate for curve i

(Real)

fct_IDiL

Loading function identifier for curve i

(Integer)

 

fct_IDiul

Unloading function identifier for curve i

(Integer)

 

hmtoggle_plus1Example (Foam)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                 Mg                  mm                   s

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/VISC_TAB/1/1

Foam

#              RHO_I

               2E-10

#                E_0                NU_t                NU_c                 R_V     Iflag     Itota

                 200                   0                   0                   0         0         0

#               Beta                   H                 R_D       K_R       K_D                Teta

                   0                   0                   0         0         0                   0

#    K_air        Np            Fscale_P

         0         0                   1

#                 P0                  Rp                Pmax                 Phi

                   0                   0                   0                   0

# fctID_ul                     Fscale_ul            Eps_._ul                   a                   b

         0                             0                   0                   0                   0

#  N_funct                       CUT_off   I_insta

         1                             0         0

#            E_final           Eps_final              Lambda                Visc                 Tol

                   0                   0                   0                   0                   0

#      Fscale_i

                   1

#      Eps_._i

                   0

#     fct_ID_il

         4

#     fct_ID_iul

         0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  3. FUNCTIONS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/4

function_4

#                  X                   Y

                  -1                -200

                   1                 200

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.Nominal stresses are computed by interpolation from input functions:

for given , read two values of function at for the two immediately lower and higher strain rates.

The example below is for two strain rate curves (up to five may be input).

starter_mat_plas_tab2

 

with

Where, , , and input are positive in compression.

The parameters a and b define the shape of the interpolation function within each interval. If a = b = 1, the interpolation is linear.

The curves are always nominal stresses versus engineering strains.

2.The strain is negative in compression. The tensile stress can either be negative or positive. The absolute stress value is used in the material law.
3.A “coupled” set of principal nominal stresses is computed with anisotropic Poisson’s ratios:

in tension ()

in compression.

Where,

4.Analysis formulation type Iflag.

Iflag = 0: corresponds to the visco-elastic foam tabulated material (visco-elasticity is computed in each principal stress direction).

Iflag = 1: behavior will be linear in both tension and compression, following Hook’s relations.

For compression, Young Modulus E0 and Poisson’s ratio are used.

Whereas, in tension the instantaneous Young modulus ratio Et is used. The other data is ignored (especially, no viscous effect can be expected).

5.For stability, E2 is filtered using:

6.Hysteresis is applied in linear tension case.

If KR = 1, Hysteresis is only applied in compression.

If KR =2, Hysteresis is applied both in compression and in tension.

Hysteresis is applied in linear tension case.

7.For air pressure Pair (when Kair = 1)

If Np 0:

where f refers to function number Np.

If Np = 0:

Relaxation is applied as .

Where, RP is the relaxation rate of pressure and t is the time.

8.When unloading, if the unloading curve is not defined (fct_IDul = 0), is computed from curve one.

starter_mat_visc_tab

If the unloading curve is defined, is interpolated between curve one and curve fct_IDul. In this case, curve 1 must correspond to a quasi-static state.

9.If fct_IDiul = 0, fct_ID1L, unloading is used instead.

Unloading functions fct_IDiul (Line 12) are used only if the unloading curve fct_IDul is not defined.

10.The instantaneous modulus is updated using:

with

Where, E0 is the minimum tension modulus, Efinal is the maximum tension modulus and VR is the relative volume computed in RADIOSS, and is the absolute value of the strain corresponding to the maximum compression modulus.

The instantaneous modulus is only used for tension.

11.If Visc is input, interpolated stress will be limited by this value to have a larger timestep:

12.The behavior is strain rate independent when .

See Also:

Material Compatibility

Law Compatibility with Failure Model

/MAT/LAW38 in Theory Manual