Block Format Keyword
/MAT/LAW38 - Visco-Elastic Foam Tabulated Material
Description
This law describes the visco-elastic foam tabulated material and can only be used with solid elements.
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW38/mat_ID/unit_ID or /MAT/VISC_TAB/mat_ID/unit_ID |
|||||||||
mat_title |
|||||||||
|
|
|
|
|
|
|
|
||
E0 |
Iflag |
Itota |
|||||||
H |
RD |
KR |
KD |
||||||
Kair |
NP |
FscaleP |
|
|
|
|
|
|
|
P0 |
RP |
Pmax |
|
|
|||||
fct_IDul |
|
Fscaleunload |
a |
b |
|||||
Nfunct |
|
CUToff |
Iinsta |
|
|
|
|
|
|
Efinal |
Visc |
Tol |
|||||||
Fscale1 |
Fscale2 |
Fscale3 |
Fscale4 |
Fscale5 |
|||||
fct_ID1L |
fct_ID2L |
fct_ID3L |
fct_ID4L |
fct_ID5L |
|
|
|
|
|
fct_ID1ul |
fct_ID2ul |
fct_ID3ul |
fct_ID4ul |
fct_ID5ul |
|
|
|
|
|
|
#RADIOSS STARTER #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /UNIT/1 unit for mat Mg mm s #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #- 2. MATERIALS: #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /MAT/VISC_TAB/1/1 Foam # RHO_I 2E-10 # E_0 NU_t NU_c R_V Iflag Itota 200 0 0 0 0 0 # Beta H R_D K_R K_D Teta 0 0 0 0 0 0 # K_air Np Fscale_P 0 0 1 # P0 Rp Pmax Phi 0 0 0 0 # fctID_ul Fscale_ul Eps_._ul a b 0 0 0 0 0 # N_funct CUT_off I_insta 1 0 0 # E_final Eps_final Lambda Visc Tol 0 0 0 0 0 # Fscale_i 1 # Eps_._i 0 # fct_ID_il 4 # fct_ID_iul 0 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #- 3. FUNCTIONS: #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /FUNCT/4 function_4 # X Y -1 -200 1 200 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #ENDDATA /END #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| |
for given , read two values of function at for the two immediately lower and higher strain rates. The example below is for two strain rate curves (up to five may be input).
with Where, , , and input are positive in compression. The parameters a and b define the shape of the interpolation function within each interval. If a = b = 1, the interpolation is linear. The curves are always nominal stresses versus engineering strains.
in tension () in compression. Where, Iflag = 0: corresponds to the visco-elastic foam tabulated material (visco-elasticity is computed in each principal stress direction). Iflag = 1: behavior will be linear in both tension and compression, following Hook’s relations. For compression, Young Modulus E0 and Poisson’s ratio are used. Whereas, in tension the instantaneous Young modulus ratio Et is used. The other data is ignored (especially, no viscous effect can be expected).
If KR = 1, Hysteresis is only applied in compression. If KR =2, Hysteresis is applied both in compression and in tension. Hysteresis is applied in linear tension case. If Np ≠ 0: where f refers to function number Np. If Np = 0: Relaxation is applied as . Where, RP is the relaxation rate of pressure and t is the time.
If the unloading curve is defined, is interpolated between curve one and curve fct_IDul. In this case, curve 1 must correspond to a quasi-static state.
Unloading functions fct_IDiul (Line 12) are used only if the unloading curve fct_IDul is not defined.
with Where, E0 is the minimum tension modulus, Efinal is the maximum tension modulus and VR is the relative volume computed in RADIOSS, and is the absolute value of the strain corresponding to the maximum compression modulus. The instantaneous modulus is only used for tension.
|