HyperWorks Solvers

/PROP/TYPE18 (INT_BEAM)

/PROP/TYPE18 (INT_BEAM)

Previous topic Next topic Expand/collapse all hidden text  

/PROP/TYPE18 (INT_BEAM)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/PROP/TYPE18 - Integrated Beam Property Set

Description

Describes the integrated beam property set. This beam model is based on Timoshenko theory and takes into account transverse shear strain without warping in torsion. It can be used for deep beam cases (short beams). Beam section and position of integration points can be either used as predefined or prescribed directly.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/PROP/TYPE18/prop_ID/unit_ID or /PROP/INT_BEAM/prop_ID/unit_ID

prop_title

Isect

Ismstr

 

 

 

 

 

 

 

 

dm

df

 

 

 

 

 

 

NIP

Iref

Y0

Z0

 

 

 

 

 

If NIP > 0, add NIP cards defining the subsection parameters

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Yi

Zi

Area

 

 

 

 

 

If Isect > 0, add following 2 lines

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

NITR

 

L1

L2

 

 

 

 

Blank Line

 

Add flag for rotational DOF for the beam nodes

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

 

 

 

 

 

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

prop_ID

Property identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

prop_title

Property title

(Character, maximum 100 characters)

 

Isect

Section type (Comment 5)

(Integer)

= 0: default integrated beam

= 1: predefined rectangular section

= 2: predefined circular section

 

Ismstr

Small strain option flag

(Integer)

= 0: default set to 4

= 1: small strain formulation from t = 0

= 4: full geometric nonlinearities

 

dm

Beam membrane damping

Default = 0.00  (Real)

 

df

Beam flexural damping

Default = 0.01  (Real)

 

NIP

Number of integration points (subsections)

Only for Isect =0; otherwise, NIP=0.

(Integer)

 

Iref

Subsection center reference flag. Only for Isect =0

Default = 0  (Integer)

= 0: subsection center is calculated as a barycenter of the integration points

= 1: subsection center is defined by using local coordinates (Y0 and Z0)

 

Y0

Local Y coordinate of the section center. Only for Isect =0

(Real)

Z0

Local Z coordinate of the section center. Only for Isect =0

(Real)

Yi

Local Y coordinate of the integration point

(Real)

Zi

Local Z coordinate of the integration point. Only for Isect =0

(Real)

Area

Area of the subsection. Only for Isect =0

(Integer)

NITR

NITR*NITR is the number of integration points in predefined section for Isect > 0

(Integer)

 

L1

First size of the predefined section for Isect > 0 (Comment 5)

(Real)

 

L2

Second size of the predefined section for Isect > 0 (Comment 5)

(Real)

 

Rotation DOF code of nodes 1 and 2 (see detail input below)

(6 Booleans)

 

hmtoggle_plus1Detail of Rotation DOF input fields for nodes 1 and 2

(1)-1

(1)-2

(1)-3

(1)-4

(1)-5

(1)-6

(1)-7

(1)-8

(1)-9

(1)-10

 

 

 

 

 

Field

Contents

SI Unit Example

= 1 Rotation DOF about X at node 1 is released

(Boolean)

 

= 1 Rotation DOF about Y at node 1 is released

(Boolean)

 

= 1 Rotation DOF about Z at node 1 is released

(Boolean)

 

= 1 Rotation DOF about X at node 2 is released

(Boolean)

 

= 1 Rotation DOF about Y at node 2 is released

(Boolean)

 

= 1 Rotation DOF about Z at node 2 is released

(Boolean)

 

hmtoggle_plus1Example

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/2

unit for prop

                 Mg                  mm                   s

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/PROP/TYPE18/4/2

Integrated beam - bXh=10X10 with 4 integration points (subsections)

#    Isect   Ismstmr

         0         0

#                 dm                  df

                   0                   0

#      NIP      Iref                  Y0                  Z0

         4         1                   0                   0

#                  Y                   Z                Area

                 2.5                 2.5                  25

                 2.5                -2.5                  25

                -2.5                 2.5                  25

                -2.5                -2.5                  25

# OmegaDOF

  000 000

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Example

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/2

unit for prop

                 Mg                  mm                   s

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/PROP/TYPE18/4/2

Integrated beam  - 4 integration points in predefined section bXh=10X10

#    Isect   Ismstmr

         1         0

#                 dm                  df

                   0                   0

#      NIP      Iref                  Y0                  Z0

         0         1                   0                   0

#     NITR                            L1                  L2

         2                            10                  10

 

#  OmegaDOF

   000 000

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.Small strain formulation is activated from time t=0, if Ismstr =1. It may be used for a faster preliminary analysis because is constant, but the accuracy of results is not ensured.
2.If Ismstr =1, the strains and stresses which are given in material laws are engineering strains and stresses. Time history output returns true strains and stresses.

clip0093

3.The cross-section of the element is defined using up to 100 integration points (Fig. 2). The element properties of the cross-section, i.e. moments of inertia and area, are computed by RADIOSS as:

4.It can be used for deep beam cases (short beams). The use of several integration points in the section allows to get an elasto-plastic model in which von Mises criteria is written on each integration point and the section can be partially plastified contrary to the classical beam element (TYPE3). Compatible with material laws 1, 2, and 36. However, as the element has only one integration point in its length, it is not recommended to use a single beam element per line of frame structure in order to take into account the plasticity progress in length, as well as in depth.

cross-section_def

Fig. 2: Cross-section definitions in the integrated beam

5.Predefined cross-sections are available (circular or rectangular). Number of integration point in the section is stated by NITR. Integration points are distributed uniformly across the section according to the section type and NITR.

For rectangular section: L1 is the rectangular size in Y-direction of the local beam coordinates system and L2 is the rectangular size in Z-direction.

For circular section: L1 is the radius.

See Also:

Material Compatibility

/BEAM

/TH/BEAM

Beam Elements (/PROP/TYPE3) in Theory Manual