Block Format Keyword
/MAT/LAW51 - Iform = 10: Multi-material Law with up to 3 Elasto-plastic Materials (Solid, Liquid, or Gas) and one high explosive
Description
Able to handle up to four materials:
• | Three elasto-plastic materials (solid, liquid, or gas) |
• | One high explosive material (JWL EOS). |
The material boundaries inside an element are not explicitly defined, but an anti-diffusive technique is used to avoid expansion of transition zone (Comment 1).
Compatible only with 3D analysis and Euler or ALE formulation.
LAW51 is based on equilibrium between each material present inside the element. RADIOSS computes and outputs a relative pressure . At each cycle:
= 1 = 2 = 3= 4
Total pressure can be calculated with external pressure:
P = + Pext.
Where, P is positive for a compression and negative for traction.
Hydrostatic stresses are computed from Polynomial EOS:
Where, which means that the EOS is linear for an expansion and cubic for a compression.
By default, the process is adiabatic Q = 0. To enable thermal computation, refer to Comment 6.
Deviatoric stresses are computed with a Johnson-Cook model:
High explosive material is modeled with linear EOS if unreacted and JWL EOS for detonation products:
Where, V is relative volume: V = Volume / V0 and E is the internal energy per unit initial volume: E = Eint / V0. For more details, refer to Comments 9 to 13.
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
/MAT/LAW51/mat_ID |
|||||||||
mat_title |
|||||||||
Blank |
|||||||||
Iform |
|
|
|
|
|
|
|
|
|
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
---|---|---|---|---|---|---|---|---|---|
Pext |
|
|
|
|
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
---|---|---|---|---|---|---|---|---|---|
E0mat_1 |
C0mat_1 |
||||||||
C1mat_1 |
C2mat_1 |
C3mat_1 |
C4mat_1 |
C5mat_1 |
|||||
G1mat_1 |
amat_1 |
bmat_1 |
nmat_1 |
|
|
||||
cmat_1 |
mat_1 |
|
|
|
|
|
|
||
mmat_1 |
T0mat_1 |
Tmeltmat_1 |
Tlimmat_1 |
||||||
KAmat_1 |
KBmat_1 |
|
|
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
---|---|---|---|---|---|---|---|---|---|
E0mat_2 |
C0mat_2 |
||||||||
C1mat_2 |
C2mat_2 |
C3mat_2 |
C4mat_2 |
C5mat_2 |
|||||
G1mat_2 |
amat_2 |
bmat_2 |
nmat_2 |
|
|
||||
cmat_2 |
mat_2 |
|
|
|
|
|
|
||
mmat_2 |
T0mat_2 |
Tmeltmat_2 |
Tlimmat_2 |
||||||
KAmat_2 |
KBmat_2 |
|
|
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
---|---|---|---|---|---|---|---|---|---|
E0mat_3 |
C0mat_3 |
||||||||
C1mat_3 |
C2mat_3 |
C3mat_3 |
C4mat_3 |
C5mat_3 |
|||||
G1mat_3 |
amat_3 |
bmat_3 |
nmat_3 |
|
|
||||
cmat_3 |
mat_3 |
|
|
|
|
|
|
||
mmat_3 |
T0mat_3 |
Tmeltmat_3 |
Tlimmat_3 |
||||||
KAmat_3 |
KBmat_3 |
|
|
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
---|---|---|---|---|---|---|---|---|---|
E0mat_4 |
C0mat_4 |
||||||||
A |
B |
R1 |
R2 |
||||||
D |
PCJ |
C1mat_4 |
|
|
IBFRAC |
|
|
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /MAT/LAW51/99 time0:100%Water - MULTIMAT:AIR+WATER+TNT,units {kg,m,s,Pa} #(output is total pressure:Pext=0) #--------------------------------------------------------------------------------------------------# # Material Law No 51. MULTI-MATERIAL SOLID LIQUID GAS -ALE-CFD-SPH #--------------------------------------------------------------------------------------------------# # Blank format
# IFLG 10 #---Global parameters------------------------------------------------------------------------------# # P_EXT NU LAMDA 0 0 0 #---Material#1:AIR(PerfectGas)---------------------------------------------------------------------# # ALPHA_1 RHO_0_1 E_0_1 P_MIN_1 C_0_1 0.0 1.2 2.5E+05 -1E30 0 # C_1_1 C_2_1 C_3_1 C_4_1 C_5_1 0 0 0 0.4 0.4 # G_1 SIGMA_Y_1 BB_1 N_1 0 0 0 0 # CC_1 EPSILON_DOT_0_1 0 0 # CM_1 T_10 T_1MELT T_1LIMIT RHOCV_1 0 0 0 0 0 # EPSILON_MAX_1 SIGMA_MAX_1 K_A_1 K_B_1 0 0 0 0 #---Material#2:WATER(Linear_Incompressible)--------------------------------------------------------# # ALPHA_2 RHO_0_2 E_0_2 P_MIN_2 C_0_2 1.0 1000.0 2.5E+05 -1E30 1E+5 # C_1_2 C_2_2 C_3_2 C_4_2 C_5_2 0 0 0 0 0 # G_2 SIGMA_Y_2 BB_2 N_2 0 0 0 0 # CC_2 EPSILON_DOT_0_2 0 0 # CM_2 T_20 T_2MELT T_2LIMIT RHOCV_2 0 0 0 0 0 # EPSILON_MAX_2 SIGMA_MAX_2 K_A_2 K_B_2 0 0 0 0 #---Material#3:not defined-------------------------------------------------------------------------# # ALPHA_3 RHO_0_3 E_0_3 P_MIN_3 C_0_3 0.0 0 0 0 0 # C_1_3 C_2_3 C_3_3 C_4_3 C_5_3 0 0 0 0 0 # G_3 SIGMA_Y_3 BB_3 N_3 0 0 0 0 # CC_3 EPSILON_DOT_0_3 0 0 # CM_3 T_30 T_3MELT T_3LIMIT RHOCV_3 0 0 0 0 0 # EPSILON_MAX_3 SIGMA_MAX_3 K_A_3 K_B_3 0 0 0 0 #---Material#4:TNT(JWL)----------------------------------------------------------------------------# # ALPHA_4 RHO_0_4 E_0_4 P_MIN_4 C_0_4 0.0 1590 7.0E+9 1E-30 1E+5 # B_1 B_2 R_1 R_2 W 371.20E+9 3.231E+9 4.15 0.95 0.3 # D P_CJ C_14 I_BFRAC 6930.0 21.0E+9 22.5E+5 0 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| |
3 = 1: Full Upwind (default, recommended value) 3 = 1e-30: Zero Upwind (less diffusive, but potentially unstable) 3 = -1: Full Downwind (Anti-Diffusive technique, potentially unstable) However, total pressure is essential for energy integration (dEint = -PdV). It can be computed with the external pressure flag Pext. P = + Pext leads to dEint = -(Pext + ) dV. This means if Pext = 0, the computed pressure is also the total pressure = P.
Where, is the cinematic shear viscosity flag, and is the cinematic volumetric viscosity flag.
For each material must be defined between 0 and 1. Sum of initial volumetric fractions must be equal to 1. For automatic initial fraction of the volume, refer to the /INIVOL card.
. For fluid materials and detonation products must remain positive to avoid any tensile strength so must be set to -Pext. For solid materials, default value = -1e30 is suitable but may be modified.
In this case and the parameters for thermal diffusion are read for each material: . For solids and liquids,, and for perfect gas .
K(T) = KA + KBT
If this value is unknown, a stable and acceptable value is: Where, is the clarity of the sound in water (SI:1500m/s).
For a given time: P(V,E) = Bfrac Pjwl (V,E). A detonation time Tdet is computed by the Starter from the detonation velocity. During the simulation the burn fraction is computed as follows: Where,
is the burn fraction calculation from burning time. is the burn fraction calculation from volumetric compression. It can take several cycles for the burn fraction to reach its maximum value of 1.00. Burn fraction calculation can be changed defining the IBFRAC flag: IBFRAC = 1: IBFRAC = 2:
/ANIM/BRICK/VFRAC (volumetric fractions for all materials)
/ANIM/BRICK/PLA51 (global plasticity) /ANIM/BRICK/TEM51 (global temperature) /ANIM/BRICK/BF51 (high explosive burn fraction) |