/MAT/LAW51 - Iform = 11: Generic Multi-material law with up to 3 Elasto-plastic Materials and one high explosive. Yield criteria type can be defined for each material.
Able to handle up to four materials:
• | Three elasto-plastic materials with polynomial EOS, following the available yield criteria: Johnson-Cook or Drücker-Prager |
• | One high explosive material with JWL EOS |
The sub-material boundaries inside an element are not explicitly defined, but an anti-diffusive technique is used to avoid expansion of transition zone (Comment 1).
Compatible only with 3D analysis and EULER or ALE formulation.
LAW51 is based on equilibrium between each materials present inside the element. RADIOSS computes and outputs a relative pressure . At each cycle:
= 1 = 2 = 3= 4
Total pressure can be calculated with external pressure:
.
Where, P is positive for a compression and negative for traction.
Hydrostatic stresses are computed from Polynomial EOS:
Where, which means that EOS is linear for an expansion and cubic for a compression.
By default, the process is adiabatic Q = 0. To enable thermal computation, refer to Comment 6.
Deviatoric stresses can be computed with either Johnson-Cook model or Drücker-Prager:
Johnson-Cook:
Drücker-Prager:
J2 = (A0 + A1P + A2P2)
High explosive material is modeled with linear EOS if unreacted (for equilibrium purpose) and JWL EOS for detonation products:
Where, V is relative volume: V = Volume / V0 and E is the internal energy per unit initial volume: E = Eint / V0. For more details, refer to Comments 9 to 13.
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
/MAT/LAW51/mat_ID |
|||||||||
mat_title |
|||||||||
Blank Format |
|||||||||
Iform |
|
|
Ipla_1 |
Ipla_2 |
Ipla_3 |
|
|
|
|
#Global parameters |
|||||||||
Pext |
|
|
|
|
|||||
#SubMaterial_1 parameters |
|||||||||
(Input depends on Ipla_1 flag, see below) |
|||||||||
#SubMaterial_2 parameters |
|||||||||
(Input depends on Ipla_2 flag, see below) |
|||||||||
#SubMaterial_3 parameters |
|||||||||
(Input depends on Ipla_3 flag, see below) |
|||||||||
#SubMaterial_4 parameters (Necessarily Jones-Wilkins-Lee material law) |
|||||||||
A |
B |
R1 |
R2 |
||||||
D |
PCJ |
|
IBFRAC |
|
Specific input for sub-material j (j= 1, 2, or 3) parameters:
If Ipla_j = 0 (no Yield criteria) sub-material input:
|
|
|
|
|
|
||||
|
If Ipla_j = 1 (Johnson-Cook Yield criteria) sub-material input
|
||||
|
|
|
||
|
If Ipla_j = 2 (Drücker-Prager yield criteria) sub-material input:
|
||||
|
|
|
||
|
||||
|
|
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /MAT/LAW51/1 Underground explosion in Calcareous Soil - UNITS {g,cm,µs} #--------------------------------------------------------------------------------------------------- # Material Law No 51. ALE MULTI-MATERIAL SOLID LIQUID GAS #--------------------------------------------------------------------------------------------------- # RHO_I RHO_0
# IFLG IPLA_1 IPLA_2 IPLA_3 11 2 0 1 # P_EXT NU LAMDA 0 0 0 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #---Plastic material with Drucker-Prager Yield Criteria--------------------------------------------# # ALPHA_1 RHO_0_1 E_0_1 P_MIN_1 C_0_1 1.0 2.33 0 -1E-20 1E-6 # C_1_1 C_2_1 C_3_1 0.256 0.256 1 # A0_1 A1_1 A2_1 A_MAX_1 .670000030E-12 .940000010E-06 .330000010 .000000000 # E_1 NU_1 0.45220 .28 # T_10 T_1MELT T_1LIMIT RHOCV_1 0 0 0 0 # EPSILON_MAX_1 SIGMA_MAX_1 K_A_1 K_B_1 0 0 0 0 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #---Gas with PerfectGas EOS------------------------------------------------------------------------# # ALPHA_2 RHO_0_2 E_0_2 P_MIN_2 C_0_2 0.0 .0013 2.5E-6 -1E-20 0 # C_1_2 C_2_2 C_3_2 C_4_2 C_5_2 0 0 0 .4 .4 # G_2 0 # T_20 T_2MELT T_2LIMIT RHOCV_2 0 0 0 0 # EPSILON_MAX_2 SIGMA_MAX_2 K_A_2 K_B_2 0 0 0 0 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #---Plastic material with Johnson-Cook Yield criteria----------------------------------------------# # ALPHA_3 RHO_0_3 E_0_3 P_MIN_3 C_0_3 0.0 0 0 0 0 # C_1_3 C_2_3 C_3_3 C_4_3 C_5_3 0 0 0 0 0 # G_3 SIGMA_Y_3 BB_3 N_3 0 0 0 0 # CC_3 EPSILON_DOT_0_3 0 0 # CM_3 T_30 T_3MELT T_3LIMIT RHOCV_3 0 0 0 0 0 # EPSILON_MAX_3 SIGMA_MAX_3 K_A_3 K_B_3 0 0 0 0 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #---High Explosive with Jones-Wilkins-Lee EOS------------------------------------------------------# # ALPHA_4 RHO_0_4 E_0_4 P_MIN_4 C_0_4 0.0 1.60 .07 -1E-20 1e-6 # B_1 B_2 R_1 R_2 W 3.7100 .03231 4.15 .95 .3 # D P_CJ C_14 I_BFRAC .693 .21 .04 0 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #---Defining LAW #1 as ALE material law------------------------------------------------------------# /ALE/MAT/1 # Modif. factor. 0 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| |
: Full Upwind (default, recommended value) : Zero Upwind (less diffusive, but potentially unstable) However, total pressure is essential for energy integration (dEint = -PdV). It can be computed with the external pressure flag Pext. P = + Pext leads to dEint = -(Pext + ) dV. This means if Pext = 0, the computed pressure is also the total pressure = P.
Where, is the dynamic shear viscosity flag, and is the dynamic volumetric viscosity flag. For each material, must be defined between 0 and 1. Sum of initial volumetric fractions must be equal to 1. For automatic initial fraction of the volume, refer to the /INIVOL card.
For fluid materials and detonation products must remain positive to avoid any tensile strength, so must be set to -Pext. For solid materials, default value is suitable but may be modified.
In this case , and the parameters for thermal diffusion are read for each material: , , and For solids and liquids, and for perfect gas .
K(T) = KA + KBT
If this value is unknown, a stable and acceptable value is:
Where, is the clarity of the sound in water (SI:1500m/s).
For a given time: P(V,E) = Bfrac Pjwl (V,E) A detonation time Tdet is computed by the Starter from the detonation velocity. During the simulation the burn fraction is computed as follows: where, the burn fraction calculation from burning time is: and the burn fraction calculation from volumetric compression is: It can take several cycles for the burn fraction to reach its maximum value of 1.00. Burn fraction calculation can be changed defining the IBFRAC flag: IBFRAC = 1: IBFRAC = 2: As of version 11.0.240, Time Histories for Detonation time and burn fraction are available through /TH/BRIC with BFRAC keyword. This allows to output a function f whose first value is detonation time (with opposite sign) and positive values corresponds to the burn fraction evolution.
|