HyperWorks Solvers

Iform = 11

Iform = 11

Previous topic Next topic Expand/collapse all hidden text  

Iform = 11

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW51 - Iform = 11: Generic Multi-material law with up to 3 Elasto-plastic Materials and one high explosive. Yield criteria type can be defined for each material.

Description

Able to handle up to four materials:

Three elasto-plastic materials with polynomial EOS, following the available yield criteria: Johnson-Cook or Drücker-Prager
One high explosive material with JWL EOS

The sub-material boundaries inside an element are not explicitly defined, but an anti-diffusive technique is used to avoid expansion of transition zone (Comment 1).

Compatible only with 3D analysis and EULER or ALE formulation.

LAW51 is based on equilibrium between each materials present inside the element. RADIOSS computes and outputs a relative pressure symbol_dp. At each cycle:

symbol_dp = symbol_dp1 = symbol_dp2 = symbol_dp3= symbol_dp4

Total pressure can be calculated with external pressure:

.

Where, P is positive for a compression and negative for traction.

Hydrostatic stresses are computed from Polynomial EOS:

Where, which means that EOS is linear for an expansion and cubic for a compression.

By default, the process is adiabatic symbol_sQ = 0. To enable thermal computation, refer to Comment 6.

Deviatoric stresses can be computed with either Johnson-Cook model or Drücker-Prager:

Johnson-Cook:

Drücker-Prager:

J2 = (A0 + A1P + A2P2)

High explosive material is modeled with linear EOS if unreacted (for equilibrium purpose) and JWL EOS for detonation products:

Where, V is relative volume: V = Volume / V0 and E is the internal energy per unit initial volume: E = Eint / V0. For more details, refer to Comments 9 to 13.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW51/mat_ID

mat_title

Blank Format

Iform

 

 

Ipla_1

Ipla_2

Ipla_3

 

 

 

 

#Global parameters

Pext

ratio

 

 

 

 

#SubMaterial_1 parameters

       (Input depends on Ipla_1 flag, see below)

#SubMaterial_2 parameters

       (Input depends on Ipla_2 flag, see below)

#SubMaterial_3 parameters

       (Input depends on Ipla_3 flag, see below)

#SubMaterial_4 parameters

       (Necessarily Jones-Wilkins-Lee material law)

A

B

R1

R2

D

PCJ

 

IBFRAC

 

 

Specific input for sub-material j (j= 1, 2, or 3) parameters:

If Ipla_j = 0 (no Yield criteria) sub-material input:

 

 

 

 

 

 

 

If Ipla_j = 1 (Johnson-Cook Yield criteria) sub-material input

 

 

 

 

 

 

If Ipla_j = 2 (Drücker-Prager yield criteria) sub-material input:

 

 

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit
Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Iform

Formulation flag

(Integer)

 

Ipla_j

Yield criteria flag (sub-material index j could be 1, 2, or 3)

(Integer)

= 0: no yield criteria (default)

= 1: Johnson-Cook

= 2: Drücker-Prager

 

#Global parameters

Pext

External pressure (Comment 2)

Default = 0 (Real)

symbol_Pa

ratio

Global Kinematic viscosity (shear) (Comment 3)

Default = 0 (Real)

symbol_m2

Global Kinematic viscosity (volumetric)  (Comment 3)

Default = 0 (Real) (Stokes Hypothesis)

symbol_m2

#submaterial parameters for Polynomial EOS

Initial volumetric fraction (Comment 4)

(Real)

 

Initial density

(Real)

symbol_kg

Initial energy per unit volume

(Real)

symbol_Jm3

Hydrodynamic cavitation pressure (Comment 5)

Default = -10-30 (Real)

symbol_Pa

Initial pressure

(Real)

symbol_Pa

Hydrodynamic coefficient

(Real)

symbol_Pa

Hydrodynamic coefficient

(Real)

symbol_Pa

Hydrodynamic coefficient

(Real)

symbol_Pa

Hydrodynamic coefficient

(Real)

 

Hydrodynamic coefficient

(Real)

 

Elasticity shear modulus

(Real)

symbol_Pa

#submaterial parameters specific to Johnson-Cook yield criteria

Plasticity yield stress

(Real)

symbol_Pa

Plasticity hardening parameter

(Real)

symbol_Pa

Plasticity hardening exponent

Default = 1.0  (Real)

 

Strain rate coefficient

Default = 0.00  (Real)

= 0: no strain rate effect

 

Reference strain rate

(Real)

If means no strain rate effect

fail_johnson

Temperature exponent

(Real)

= 0: no temperature effect

 

#submaterial parameters specific to thermal behavior

Initial temperature

Default = 300 K  (Real)

fail_tab_temp

Melting temperature

Default = 1030  (Real)

fail_tab_temp

Maximum temperature

Default = 1030  (Real)

fail_tab_temp

Specific heat per unit of volume (Comment 7)

(Real)

symbol_J_K_m3

Failure plastic strain

Default = 1030   (Real)

 

Plasticity maximum stress

Default = 1030  (Real)

symbol_Pa

Thermal conductivity coefficient 1 (Comment 8)

(Real)

symbol_thermal1

Thermal conductivity coefficient 2 (Comment 8)

(Real)

symbol_thermal2

#submaterial parameters specific to Drücker-Prager criteria

Young Modulus

(Real)

symbol_Pa

Poisson’s ratio

(Real)

 

Yield coefficient

(Real)

symbol_Pa2

Yield coefficient

(Real)

symbol_Pa

Yield coefficient

(Real)

 

Yield coefficient

(Real)

symbol_Pa2

#submaterial parameters specific to Jones-Wilkins-Lee EOS

Initial volumetric fraction of unreacted explosive (Comment 4)

(Real)

 

Initial density of unreacted explosive

(Real)

symbol_kg

Detonation energy

(Real)

symbol_Jm3

Minimum pressure (Comment 5)

Default = -10-30  (Real)

symbol_Pa

Initial pressure of unreacted explosive

(Real)

symbol_Pa

A

JWL EOS coefficient

(Real)

symbol_Pa

B

JWL EOS coefficient

(Real)

symbol_Pa

R1

JWL EOS coefficient

(Real)

 

R2

JWL EOS coefficient

(Real)

 

JWL EOS coefficient

(Real)

 

D

Detonation velocity

fail_lad_SI_k

PCJ

Chapman-Jouget pressure

(Real)

symbol_Pa

Bulk modulus for unreacted explosive (Comment 8)

(Real)

symbol_Pa

IBFRAC

Burn fraction calculation flag (Comment 11)

(Integer)

= 0: Volumetric Compression + Burning Time

= 1: Volumetric Compression only

= 2: Burning Time only

 

hmtoggle_plus1Example

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/LAW51/1

Underground explosion in Calcareous Soil - UNITS {g,cm,µs}

#---------------------------------------------------------------------------------------------------

#                    Material Law No 51. ALE MULTI-MATERIAL SOLID LIQUID GAS

#---------------------------------------------------------------------------------------------------

#              RHO_I               RHO_0

           

#   IFLG                        IPLA_1    IPLA_2   IPLA_3

         11                             2           0          1

#              P_EXT                  NU               LAMDA

                   0                   0                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#---Plastic material with Drucker-Prager Yield Criteria--------------------------------------------#

#           ALPHA_1             RHO_0_1               E_0_1             P_MIN_1               C_0_1

                1.0                2.33                   0              -1E-20                1E-6

#             C_1_1               C_2_1               C_3_1

              0.256               0.256                    1

#              A0_1                A1_1                A2_1             A_MAX_1

     .670000030E-12     .940000010E-06          .330000010          .000000000

#                E_1                NU_1

            0.45220                 .28

#                                   T_10             T_1MELT            T_1LIMIT             RHOCV_1

                                       0                   0                   0                   0

#      EPSILON_MAX_1         SIGMA_MAX_1               K_A_1               K_B_1

                   0                   0                   0                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#---Gas with PerfectGas EOS------------------------------------------------------------------------#

#            ALPHA_2             RHO_0_2               E_0_2             P_MIN_2               C_0_2

                0.0               .0013              2.5E-6              -1E-20                   0

#             C_1_2               C_2_2                C_3_2               C_4_2               C_5_2

                  0                   0                   0                   .4                  .4

#                G_2

                   0

#                                   T_20             T_2MELT            T_2LIMIT             RHOCV_2

                                       0                   0                   0                   0

#      EPSILON_MAX_2         SIGMA_MAX_2               K_A_2               K_B_2

                   0                   0                   0                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#---Plastic material with Johnson-Cook Yield criteria----------------------------------------------#

#            ALPHA_3             RHO_0_3               E_0_3             P_MIN_3                C_0_3

                0.0                   0                   0                   0                    0

#             C_1_3               C_2_3               C_3_3               C_4_3                C_5_3

                  0                   0                   0                   0                    0

#               G_3           SIGMA_Y_3                BB_3                 N_3

                  0                   0                   0                   0

#              CC_3     EPSILON_DOT_0_3

                  0                   0

#              CM_3                T_30             T_3MELT            T_3LIMIT             RHOCV_3

                  0                   0                   0                   0                   0

#     EPSILON_MAX_3         SIGMA_MAX_3               K_A_3               K_B_3

                  0                   0                   0                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#---High Explosive with Jones-Wilkins-Lee EOS------------------------------------------------------#

#           ALPHA_4             RHO_0_4               E_0_4             P_MIN_4              C_0_4

                0.0                1.60                 .07              -1E-20               1e-6

#               B_1                 B_2                 R_1                 R_2                  W

             3.7100              .03231                4.15                 .95                 .3

#                 D                P_CJ                C_14                      I_BFRAC

               .693                 .21                 .04                            0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#---Defining LAW #1 as ALE material law------------------------------------------------------------#

/ALE/MAT/1

#     Modif. factor.

                  0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.The anti-diffusive technique can be adjusted with /UPWIND from Starter Input. The symbol_n3 flag is the upwind coefficient for a damp area:

: Full Upwind (default, recommended value)

: Zero Upwind (less diffusive, but potentially unstable)

2.RADIOSS computes and outputs a relative pressure symbol_dp.

However, total pressure is essential for energy integration (dEint = -PdV). It can be computed with the external pressure flag Pext.

P = symbol_dp + Pext leads to dEint = -(Pext +symbol_dp ) dV.

This means if Pext = 0, the computed pressure symbol_dp is also the total pressure symbol_dp = P.

3.Kinematic viscosities are global and not specific to each material for computing viscous stress tensor:

Where, is the dynamic shear viscosity flag, and

is the dynamic volumetric viscosity flag.

4.Volumetric fractions enable sharing of elementary volume within the three different materials.

For each material, must be defined between 0 and 1.

Sum of initial volumetric fractions must be equal to 1.

For automatic initial fraction of the volume, refer to the /INIVOL card.

5.flag is the minimum value for the computed pressure symbol_dp. It means that total pressure is also bounded to:

For fluid materials and detonation products must remain positive to avoid any tensile strength, so must be set to -Pext.

For solid materials, default value is suitable but may be modified.

6.Heat contribution is computed only if the thermal card is associated to the material law (/HEAT/MAT).

In this case , and the parameters for thermal diffusion are read for each material:

, , and

For solids and liquids, and for perfect gas .

7.The temperature evolution in the Johnson-Cook model is computed with the flag , even if the thermal card (/HEAT/MAT) is not defined.
8.Thermal conductivity, K, is linearly dependent on the temperature:

K(T) = KA + KBT

9.It is highly recommended to provide a strictly positive coefficient for unreacted explosive EOS in order to ensure equilibrium calculation and numerical stability.

If this value is unknown, a stable and acceptable value is:

Where, is the clarity of the sound in water (SI:1500m/s).

10.Explosive material ignition is made with detonator cards, refer to /DFS/DETPOIN or /DFS/DETPLAN.
11.Detonation Velocity (D) and Chapman Jouget Pressure (PCJ ) are used to compute the burn fraction calculation (). It controls the release of detonation energy and corresponds to a factor which multiplies JWL pressure.

For a given time: P(V,E) = Bfrac Pjwl (V,E)

A detonation time Tdet is computed by the Starter from the detonation velocity. During the simulation the burn fraction is computed as follows:

law5_equation

where, the burn fraction calculation from burning time is:

and the burn fraction calculation from volumetric compression is:

It can take several cycles for the burn fraction to reach its maximum value of 1.00.

Burn fraction calculation can be changed defining the IBFRAC flag:

IBFRAC = 1: law5_Ibfrac1_eq

IBFRAC = 2: law5_Ibfrac2_eq

As of version 11.0.240, Time Histories for Detonation time and burn fraction are available through /TH/BRIC with BFRAC keyword. This allows to output a function f whose first value is detonation time (with opposite sign) and positive values corresponds to the burn fraction evolution.

dfs_detpoin_eq

12.Detonation times can be written in the Starter listing file for each JWL element. The printout flag (Ipri) must be greater than or equal to 3 (/IOFLAG).