HyperWorks Solvers

/MAT/LAW66

/MAT/LAW66

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW66

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW66 - Visco-Elastic Plastic Piecewise Linear Material

Description

This law models an isotropic tension-compression elasto-plastic material law using user-defined functions for the work-hardening portion of the stress-strain (plastic strain vs. stress).

This law can be defined for compression and tension.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW66/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

Chard

Fcut

Fsmooth

Iyld_rate

Pc

Pt

 

 

 

 

 

 

 

Read only if Iyld_rate = 0, 1 or 2

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

fct_IDc

fct_IDt

Fscalec

Fscalet

 

 

 

 

c

VP

 

 

 

 

Read only if Iyld_rate = 3

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

fct_IDc

fct_IDt

Fscalec

Fscalet

 

 

 

 

Frate_IDc

Frate_IDt

Fscale_ratec

Fscale_ratet

 

 

 

 

 

Read only if Iyld_rate = 4

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

NFUNCC

NFUNCT

 

 

 

 

 

 

 

 

 

For each NFUNCC

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

fct_IDc

 

Fscalec

 

 

 

 

 

For each NFUNCT

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

fct_IDt

 

Fscalet

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

E

Young’s modulus

(Real)

Poisson’s ratio

(Real)

 

Chard

Hardening coefficient

(Real)

= 0: the hardening is a full isotropic model

= 1: the hardening uses the kinematic Prager-Ziegler model

= value between 0 and 1: the hardening is interpolated between the two models

 

Fsmooth

Smooth strain rate option flag

Default = 0  (Integer)

= 0: no strain rate smoothing

= 1: strain rate smoothing active

 

Fcut

Cutoff frequency for strain rate filtering

Default = 1030 (Real)

Iyld_rate

Rate effect on the yield stress flag

Default = 1  (Integer)

= 1: Using Cowper-Symonds:

= 2: By using:

= 3: By using two load curves to scale the yield stress (fct_IDc) in compression and tension (fct_IDt).

= 4: By using different functions for compression and tension for different strain rate values.

 

Pc

Limit pressure in compression

Default = 0  (Real)

Pt

Limit pressure in tensile

Default = 0  (Real)

fct_IDc

Compression yield stress

(Integer)

 

fct_IDt

Tension yield stress

(Integer)

 

Fscalec

Scale factor for ordinate (stress) in fct_IDc

Default = 1.0  (Real)

Fscalet

Scale factor for ordinate (stress) in fct_IDt

Default = 1.0  (Real)

c

Strain rate parameter

(Real)

 

Reference strain rate

Default = 1.0  (Real)

Initial yield stress

Default = 0  (Real)

VP

Strain rate choice flag

(Integer)

= 0: strain rate effect on the yield stress is depending on the total strain rate

= 1: strain rate effect on the yield stress is depending on plastic strain rate

Only available if Iyld_rate = 1 (Cowper Symonds) - (Comments 2 and 3)

 

Frate_IDc

Compression strain rate effect function identifier

(Integer)

 

Frate_IDt

Tension strain rate effect function identifier

(Integer)

 

Fscale_ratec

Scale factor for ordinate (stress) in Frate_IDc

Default = 1.0  (Real)

Fscale_ratet

Scale factor for ordinate (stress) in Frate_IDt

Default = 1.0  (Real)

NFUNCC

Number of compression function

(Integer)

 

NFUNCT

Number of tension function

(Integer)

 

ith compression strain rate i =1,NFUNCC

(Real)

ith tension strain rate i =1,NFUNCT

(Real)

hmtoggle_plus1Example (Aluminum)

#RADIOSS STARTER

/UNIT/1

unit for mat

                  g                  mm                  ms

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/LAW66/1/1

Aluminum

#              RHO_I

               .0027

#                  E                  NU              C_hard               F_cut  F_smooth Iyld_rate

               60400                 .33                   0                   0         0         4

#                P_c                 P_t

                 500                 600

#   NFUNCC    NFUNCT

         2         2

#  fct_IDc                    Episilon_c             Fscalec

        38                            10                   1

        40                            40                 1.6

#  fct_IDt                    Episilon_t             Fscalet

        38                            10                   1

        40                            40                 1.6

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  3. FUNCTIONS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/38

function_38

#                  X                   Y

                   0                  90

                 .08                 170

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/40

function_40

#                  X                   Y

                   0                  90

                 .08                 170

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.This is an isotropic elastic-plastic law. The yield stress is defined by using the compression and tension yield stress versus effective plastic strain for the both (compression and tension). When exceeded, the two pressures Pt and Pc, determine if the tension yield stress or compression yield stress is used respectively.

If the pressure is between these two values, the yield stress is given by:

If –Pt < P < Pc,

If Pt = Pc = 0, or the pressure is out of the two values range, the yield stress is given by:

if P < 0

if P > 0

2.Yield stress is computed as:

If VP = 1:

if

if

If VP = 0:

if

if

with being static yield stress and being initial yield stress.

See Also:

Material Compatibility

Law Compatibility with Failure Model

/VISC/PRONY

/MAT/LAW2 and /MAT/LAW36 in User's Guide

Example 44 - Blow Molding with AMS