HyperWorks Solvers

/MAT/LAW83

/MAT/LAW83

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW83

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW83 - Advanced Connection Material

Description

This law describes the Connection material, which can be used to model spotweld, welding line, glue, or adhesive layers in laminate composite material. Elastic and elastoplastic behavior can be defined. The plastic behavior of the material can be coupled in normal and shear directions for corresponding strain-rates. This material is applicable only to solid hexahedron elements (/BRICK) and the material time-step does not depend on element height.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW83/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

 

 

Imass

 

 

 

 

 

fct_ID1

 

Y_scale1

X_scale1

symbol_a_14

coeffec-B

RN

RS

Fsmooth

Fcut

 

 

 

fct_IDN

fct_IDS

XSCALE

 

 

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

symbol_kg

E

Young’s modulus per unit length

(Real)

symbol_kg_m2s2

Imass

Mass calculation flag

Default = 0  (Integer)

= 0: Element mass is calculated using density and volume

= 1: Element mass is calculated using density and (means of upper and lower) area

 

fct_ID1

Normalized yield curve that specifies true stress vs. plastic elongation

(Integer)

 

Y_scale1

Scale factor for ordinate of the normalized function, fct_ID1. See comment 10.

Default = 1.0  (Real)

 

X_scale1

Scale factor for abscissa of the function, fct_ID1 See comment 10.

Default = 1.0  (Real)

symbol_m

symbol_a_14

Angle parameter used in the calculation of the effective true stress (Comment 8).

Default = 0.0 (Real)

rad

coeffec-B

Exponent used in the calculation of the effective true stress (Comment 8).

Default = 2.0  (Real)

 

RN

Maximum true stress in normal direction used in the calculation of effective true stress.

Default = 1.0  (Real)

RS

Maximum true stress in shear direction used in the calculation of effective true stress.

Default = 1.0  (Real)

Fsmooth

Strain rate filtering flag

Default = 0  (Integer)

= 0: no strain rate filtering

= 1: strain rate filtering

 

Fcut

Cutoff frequency for the strain rate filtering

Default = 1030  (Real)

symbol_Hz

fct_IDN

Function identifier defining a scale factor vs. the plastic displacement rate in normal direction. (Comment 9)

Default = 0  (Integer)

 

fct_IDS

Function identifier defining a scale factor vs. the plastic displacement rate in shear direction. (Comment 9)

Default = 0  (Integer)

 

XSCALE

Scale factor for the abscissa of functions fct_IDN and fct_IDS (Comment 9)

Default = 1.0  (Real)

fail_lad_SI_k

hmtoggle_plus1Example (Connect)

In this example, normal yield curve is fct_ID1=200. Maximal normal true stress is 0.2 Gpa and maximal shear true stress is 0.4 Gpa. coeffec-B = 2  which is used to fit the mixed-mode load case (30° or 60°) of connection. symbol_a_14 = 0, peel effect is not considered.

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                 kg                  mm                  ms

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/LAW83/1/1

CONNECT MATERIAL

#              RHO_I

              7.8E-6

#                  E                         Imass

                  20                             0

#  fct_ID1                      Y_scale1            X_scale1               ALPHA                BETA

       200                             1                   1                   0                   2

#                 RN                  RS   Fsmooth                Fcut

                  .2                  .4         0                   0

#  fct_IDN   fct_IDS              XSCALE

         0         0                   0

/FAIL/SNCONNECT/1/1

#            ALPHA_0              BETA_0             ALPHA_F              BETA_F  Ifail_so      ISYM

                   0                   2                   0                   2         1         1

#   fct_0N    fct_0S    fct_FN    fct_FS            XSCALE_0            XSCALE_F

      2001      2002      2003      2004                   1                   1

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  3. FUNCTIONS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/200

MAT83 curve

#                  X                   Y

                   0                   1

                   1                   1

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/2001

fct_0N

#                  X                   Y

                   0                  .5

                   1                  .5

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/2002

fct_0S

#                  X                   Y

                   0                  .5

                   1                  .5

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/2003

fct_fN

#                  X                   Y

                   0                   1

                   1                   1

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/2004

fct_fS

#                  X                   Y

                   0                   1

                   1                   1

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.This law is compatible with 8-noded hexadedron elements (/BRICK) only. The orientation of the element normal direction with respect to the element faces is important, and is defined as follows:

prop_connect_10

The element local coordinate system is constructed in the mid-plane section between the bottom (1-2-3-4) and top (5-6-7-8) faces.

mat_law83

The element has four Gauss integration points placed in the mid-plane section defined by points 1a, 2a, 3a, and 4a. These four points (1a, 2a, 3a, and 4a) lie midway between the bottom and top face nodes, and the orientation of the local coordinate axes (r-s-t) is the same as that of shell elements and t-axis is assume to be directed from bottom face to top face.

2.The stiffness modulus and stresses are defined per elongation in order to be independent from the initial height (from node 1 to 5, in the figure above) of the solid element. For example, E=210000 MPa/mm means that the normal stress increases by 210000 MPa for each 1 mm of elongation until the yield stress limit specified by the yield stress curve is reached. The stiffness in shear direction is assumed to be equal to the stiffness modulus, E. The Poisson’s ratio is equal to zero.
3.The complete element elongation can be subdivided into an elastic portion (before yield stress is reached) and a portion of the plastic elongation. In the simplest case of uni-axial tension and compression, plastic elongation is calculated as:

normal_elongation_plastic = total_normal_elongation-true_normal_stress/E

The plastic elongation is accounted for when fct_ID1 is specified. This is usually a non-decreasing function, which represents true stress as a function of the plastic elongation. The first abscissa value of the function should be “0” and the first ordinate value is the yield stress. The function may have a stress decrease portion to model material damage.

4.The material behavior is identical in tension and compression. The normal and shear DOF are not coupled in the elastic region.
5.The normal and shear DOF are coupled in the plastic region. The effective true stress () is calculated from normal () and shear stress (), as follows:

fct_IDN and fct_IDS specify a scaling coefficient for normal and shear stress as a function of the plastic displacement rate.
sym is the sinus of the angle between the normal of the lower surface and the normal of the upper surface of the solid element.
6.The height of the solid element can be equal to zero. The element height does not affect the time step. Only nodal time step is available for this material.
7.All nodes of the solid elements must be connected to other shells or solid elements, slave nodes of rigid body (/RBODY) or slave nodes of tied interface (/INTER/TYPE2).
8.When all nodes of the solid element become free, the element is deleted.
9.The rupture criteria for this material is defined by /FAIL/SNCONNECT.
10.The true stress will be taken from fct_ID1 as:

See Also:

Material Compatibility

Law Compatibility with Failure Model