Block Format Keyword
/MAT/LAW83 - Advanced Connection Material
Description
This law describes the Connection material, which can be used to model spotweld, welding line, glue, or adhesive layers in laminate composite material. Elastic and elastoplastic behavior can be defined. The plastic behavior of the material can be coupled in normal and shear directions for corresponding strain-rates. This material is applicable only to solid hexahedron elements (/BRICK) and the material time-step does not depend on element height.
Format
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
/MAT/LAW83/mat_ID/unit_ID |
|||||||||
mat_title |
|||||||||
|
|
|
|
|
|
|
|
||
E |
|
|
Imass |
|
|
|
|
|
|
fct_ID1 |
|
Y_scale1 |
X_scale1 |
||||||
RN |
RS |
Fsmooth |
Fcut |
|
|
|
|||
fct_IDN |
fct_IDS |
XSCALE |
|
|
|
|
|
|
|
Example (Connect) |
In this example, normal yield curve is fct_ID1=200. Maximal normal true stress is 0.2 Gpa and maximal shear true stress is 0.4 Gpa. = 2 which is used to fit the mixed-mode load case (30° or 60°) of connection. = 0, peel effect is not considered. #RADIOSS STARTER #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /UNIT/1 unit for mat kg mm ms #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #- 2. MATERIALS: #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /MAT/LAW83/1/1 CONNECT MATERIAL # RHO_I 7.8E-6 # E Imass 20 0 # fct_ID1 Y_scale1 X_scale1 ALPHA BETA 200 1 1 0 2 # RN RS Fsmooth Fcut .2 .4 0 0 # fct_IDN fct_IDS XSCALE 0 0 0 /FAIL/SNCONNECT/1/1 # ALPHA_0 BETA_0 ALPHA_F BETA_F Ifail_so ISYM 0 2 0 2 1 1 # fct_0N fct_0S fct_FN fct_FS XSCALE_0 XSCALE_F 2001 2002 2003 2004 1 1 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #- 3. FUNCTIONS: #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /FUNCT/200 MAT83 curve # X Y 0 1 1 1 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /FUNCT/2001 fct_0N # X Y 0 .5 1 .5 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /FUNCT/2002 fct_0S # X Y 0 .5 1 .5 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /FUNCT/2003 fct_fN # X Y 0 1 1 1 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /FUNCT/2004 fct_fS # X Y 0 1 1 1 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #ENDDATA /END #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| |
The element local coordinate system is constructed in the mid-plane section between the bottom (1-2-3-4) and top (5-6-7-8) faces. The element has four Gauss integration points placed in the mid-plane section defined by points 1a, 2a, 3a, and 4a. These four points (1a, 2a, 3a, and 4a) lie midway between the bottom and top face nodes, and the orientation of the local coordinate axes (r-s-t) is the same as that of shell elements and t-axis is assume to be directed from bottom face to top face.
normal_elongation_plastic = total_normal_elongation-true_normal_stress/E The plastic elongation is accounted for when fct_ID1 is specified. This is usually a non-decreasing function, which represents true stress as a function of the plastic elongation. The first abscissa value of the function should be “0” and the first ordinate value is the yield stress. The function may have a stress decrease portion to model material damage.
|
See Also: