Block Format Keyword
/MAT/LAW57 - Barlat 3-Parameters Orthotropic Material
Description
This law describes plasticity hardening defined by a user function and can be used only with shell elements. This is an elasto-plastic orthotropic law for modeling anisotropic materials in forming processes especially aluminum alloys. This material law must be used with property set type /PROP/TYPE9 (SH_ORTH) or /PROP/TYPE10 (SH_COMP).
Format
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
(7)
|
(8)
|
(9)
|
(10)
|
/MAT/LAW57/mat_ID/unit_ID or /MAT/BARLAT3/mat_ID/unit_ID
|
mat_title
|
|
|
|
|
|
|
|
|
|
E
|
|
|
|
|
|
|
|
fct_IDE
|
|
Einf
|
CE
|
|
|
|
|
r00
|
r45
|
r90
|
Chard
|
m
|
|
|
|
|
|
|
|
fct_IDi
|
|
Fscalei
|
|
|
|
|
|
Field
|
Contents
|
SI Unit Example
|
mat_ID
|
Material identifier
(Integer, maximum 10 digits)
|
|
unit_ID
|
Optional unit identifier
(Integer, maximum 10 digits)
|
|
mat_title
|
Material title
(Character, maximum 100 characters)
|
|
|
Initial density
(Real)
|
|
E
|
Young’s modulus
(Real)
|
|
|
Poisson’s ratio
(Real)
|
|
fct_IDE
|
Function identifier for the scale factor of Young modulus, when Young modulus is function of the plastic strain (Comment 11):
Default = 0: in this case the evolution of Young depends on Einf and CE.
(Integer)
|
|
Einf
|
Saturated Young’s modulus for infinitive plastic strain
(Real)
|
|
CE
|
Parameter for Young’s modulus evolution
(Real)
|
|
r00
|
Lankford parameter 0 degree
Default = 1.0 (Real)
|
|
r45
|
Lankford parameter 45 degrees
Default = 1.0 (Real)
|
|
r90
|
Lankford parameter 90 degrees
Default = 1.0 (Real)
|
|
Chard
|
Hardening coefficient
(Real)
= 0: hardening is full isotropic model
= 1: hardening uses the kinematic Prager-Ziegler model
= between 0 and 1: hardening is interpolated between the two models
|
|
m
|
Barlat parameter
Default = 6.0 (Real)
= 8.0: for Face Centered Cubic (FCC) material
= 6.0: for Body Centered Cubic (BCC) material
|
|
|
Failure plastic strain
Default = 1.0 x 1030 (Real)
|
|
|
Tensile failure strain at which stress starts to reduce.
Default = 1.0 x 1030 (Real)
|
|
|
Maximum tensile failure damage strain at which the stress in element is set to zero.
Default = 2.0 x 1030 (Real)
|
|
fct_IDi
|
Plasticity curves ith function identifier
(Integer)
|
|
Fscalei
|
Scale factor for ith function
Default set to 1.0 (Real)
|
|
|
Strain rate for ith function
(Real)
|
|
|
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
g mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW57/1/1
Steel
# RHO_I
.008
# E NU
206000 .300000012
# fct_IDE E_INF CE
0 0 0
# r00 r45 r90 C_hard m
1.79 1.51 2.27 0 0
# EPSP_max EPS_T EPS_M
0 0 0
# fct_ID Fscale_i EPS_i
5 0 0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 3. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/5
function_5
# X Y
0 157
.1 320
.5 480
1.2 600
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
|
1. | The anisotopic yield criteria F for plane stress is defined by: |
where,
is the yield stress
and
2. | Angles for Lankford parameters are defined with respect to orthotropic direction 1. The material constants a, c, h, and p are obtained from the three Lankford parameters: |
Material constant p is calculated by solving:
3. | If the last point of the first (static) function equals 0 in stress, the default value of is set to the corresponding value of . |
4. | If (plastic strain) reaches , in one integration point, the corresponding shell element is deleted. |
5. | If the largest principal strain , the stress is reduced using the following relation: |
6. | If , the stress is reduced to 0 (but the element is not deleted). |
7. | The maximum number of curves is 10. |
8. | If , the yield is interpolated between fn and fn-1. |
9. | If , function f1 is used. |
10. | Above , yield is extrapolated. |
11. | The evolution of Young’s modulus: |
• | If fct_IDE > 0, the curve defines a scale factor for Young modulus evolution with equivalent plastic strain, which means the Young Modulus is scaled by the function : |
The initial value of the scale factor should be equal to 1 and it decreases.
• | If fct_IDE = 0, the Young Modulus is calculated as: |
Where, E and Einf are respectively the initial and asymptotic value of Young’s modulus, and is the accumulated equivalent plastic strain.
Note: If fct_IDE = 0 and CE = 0, Young modulus E is kept constant.
|
See Also:
Material Compatibility
Law Compatibility with Failure Model
/MAT/LAW2 and /MAT/LAW36 in User's Guide
Barlat's law in Theory Manual