HyperWorks Solvers

/MAT/LAW57 (BARLAT3)

/MAT/LAW57 (BARLAT3)

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW57 (BARLAT3)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW57 - Barlat 3-Parameters Orthotropic Material

Description

This law describes plasticity hardening defined by a user function and can be used only with shell elements. This is an elasto-plastic orthotropic law for modeling anisotropic materials in forming processes especially aluminum alloys. This material law must be used with property set type /PROP/TYPE9 (SH_ORTH) or /PROP/TYPE10 (SH_COMP).

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW57/mat_ID/unit_ID or /MAT/BARLAT3/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

fct_IDE


Einf

CE

 

 

 

 

r00

r45

r90

Chard

m

 

 

 

 

fct_IDi

 

Fscalei

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

E

Young’s modulus

(Real)

Poisson’s ratio

(Real)

 

fct_IDE

Function identifier for the scale factor of Young modulus, when Young modulus is function of the plastic strain (Comment 11):

Default = 0: in this case the evolution of Young depends on Einf and CE.

(Integer)

 

Einf

Saturated Young’s modulus for infinitive plastic strain

(Real)

 

CE

Parameter for Young’s modulus evolution

(Real)

 

r00

Lankford parameter 0 degree

Default = 1.0  (Real)

 

r45

Lankford parameter 45 degrees

Default = 1.0  (Real)

 

r90

Lankford parameter 90 degrees

Default = 1.0  (Real)

 

Chard

Hardening coefficient

(Real)

= 0: hardening is full isotropic model

= 1: hardening uses the kinematic Prager-Ziegler model

= between 0 and 1: hardening is interpolated between the two models

 

m

Barlat parameter

Default = 6.0  (Real)

= 8.0: for Face Centered Cubic (FCC) material

= 6.0: for Body Centered Cubic (BCC) material

 

Failure plastic strain

Default = 1.0 x 1030  (Real)

 

Tensile failure strain at which stress starts to reduce.

Default = 1.0 x 1030  (Real)

 

Maximum tensile failure damage strain at which the stress in element is set to zero.

Default = 2.0 x 1030  (Real)

 

fct_IDi

Plasticity curves ith function identifier

(Integer)

 

Fscalei

Scale factor for ith function

Default set to 1.0  (Real)

 

Strain rate for ith function

(Real)

hmtoggle_plus1Example (Steel)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                  g                  mm                  ms

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/LAW57/1/1

Steel

#              RHO_I

                .008

#                  E                  NU

              206000          .300000012

#  fct_IDE                         E_INF                  CE

         0                             0                   0

#                r00                 r45                 r90              C_hard                   m

                1.79                1.51                2.27                   0                   0

#           EPSP_max               EPS_T               EPS_M

                   0                   0                   0

#   fct_ID                      Fscale_i               EPS_i

         5                             0                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  3. FUNCTIONS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/5

function_5

#                  X                   Y

                   0                 157

                  .1                 320

                  .5                 480

                 1.2                 600

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.The anisotopic yield criteria F for plane stress is defined by:

where,

is the yield stress

and

2.Angles for Lankford parameters are defined with respect to orthotropic direction 1. The material constants a, c, h, and p are obtained from the three Lankford parameters:

Material constant p is calculated by solving:

3.If the last point of the first (static) function equals 0 in stress, the default value of is set to the corresponding value of .
4.If (plastic strain) reaches , in one integration point, the corresponding shell element is deleted.
5.If the largest principal strain , the stress is reduced using the following relation:

6.If , the stress is reduced to 0 (but the element is not deleted).
7.The maximum number of curves is 10.
8.If , the yield is interpolated between fn and fn-1.
9.If , function f1 is used.
10.Above , yield is extrapolated.

law57

11.The evolution of Young’s modulus:
If fct_IDE > 0, the curve defines a scale factor for Young modulus evolution with equivalent plastic strain, which means the Young Modulus is scaled by the function :

The initial value of the scale factor should be equal to 1 and it decreases.

If fct_IDE = 0, the Young Modulus is calculated as:

Where, E and Einf are respectively the initial and asymptotic value of Young’s modulus, and is the accumulated equivalent plastic strain.

Note: If fct_IDE = 0 and CE = 0, Young modulus E is kept constant.

See Also:

Material Compatibility

Law Compatibility with Failure Model

/MAT/LAW2 and /MAT/LAW36 in User's Guide

Barlat's law in Theory Manual