HyperWorks Solvers

/MAT/LAW32 (HILL)

/MAT/LAW32 (HILL)

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW32 (HILL)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW32 - Hill Orthotropic Plastic Material

Description

This law describes the Hill orthotropic plastic material. It is applicable only to shell elements. This law differs from LAW43 (HILL_TAB) only in the input of yield stress.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW32/mat_ID/unit_ID or /MAT/HILL/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

a

n

m

 

 

 

 

 

 

r00

r45

r90

 

 

Iyield0

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

E

Young’s modulus

(Real)

Poisson’s ratio

(Real)

 

a

Yield parameter

(Real)

Hardening parameter

(Real)

 

n

Hardening exponent

(Real)

 

Failure plastic strain

Default = 1030  (Real)

 

Maximum stress

Default = 1030  (Real)

Minimum strain rate

Default = 1.0  (Real)

m

Strain rate exponent

Default = 0.0  (Real)

 

r00

Lankford parameter 0 degree (Comment 5)

Default = 1.0  (Real)

 

r45

Lankford parameter 45 degrees

Default = 1.0  (Real)

 

r90

Lankford parameter 90 degrees

Default = 1.0  (Real)

 

Iyield0

Yield stress flag

(Integer)

= 0: average yield stress input

= 1: yield stress in orthotropic direction 1

 

hmtoggle_plus1Example (Steel)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                 kg                  mm                  ms

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/HILL/1/1

void_steel

#              RHO_I

              7.8E-7

#                  E                  NU

                 210                  .3

#                  A           EPSILON_0                   n             EPS_max           SIGMA_max

                 .17                  .2                 .45                   0                   0

#          EPS_DOT_0                   m

                   0                   0

#                r00                 r45                 r90                       Iyield0

                 .75                   1                1.25                             0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.The yield stress is defined as follows:

The elastic limit is given by:

Where, is the plastic strain and is the strain rate.

2.The yield stress is compared to the equivalent stress:

mat_law32_yield_stress

3.This material law must be used with property set type /PROP/TYPE10 (SH_COMP) or /PROP/TYPE9 (SH_ORTH).
4.Iterative projection (Iplas =1) and radial return (Iplas =2) for shell plane stress plasticity are available.
5.Angles for Lankford parameters are defined with respect to orthotropic direction 1.


The Lankford parameters rα is the ratio of plastic strain in plane and plastic strain in thickness direction .

Where, α is the angle to the orthotropic direction 1.

This Lankford parameters rα could be determined from a simple tensile test at an angle α.

A higher value of R means better formability.

6.If the yield stresses have been obtained in the orthotropic direction 1, define Iyield0 =1; otherwise Iyield0 =0.
7.When reaches the value of , in one integration point, then the corresponding shell element is deleted.

See Also:

Material Compatibility

Law Compatibility with Failure Model

Hill's Law for Orthotropic Plastic Shells in Theory Manual