HyperWorks Solvers

/MAT/LAW10 (DPRAG1)

/MAT/LAW10 (DPRAG1)

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW10 (DPRAG1)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW10 - Rock-Concrete Material

Description

This law, based on Drücker-Prager yield criteria, is used to model materials with internal friction such as rock-concrete. The plastic behavior of these materials is dependent on the pressure in the material (Comment 1). This law is similar to LAW21 (/MAT/DPRAG); the only difference being that in this law, the pressure is defined as a cubic function of volumetric strain, and hence requires the input of certain coefficients (Comment 2). This law is compatible only with solid elements.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW10/mat_ID/unit_ID or /MAT/DPRAG1/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

A0

A1

A2

Amax

 

 

C0

C1

C2

C3

 

 

symbol_dpmin

Pext

 

 

 

 

 

 

B

symbol_umax

 

 

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

symbol_kg

E

Young’s modulus

(Real)

symbol_Pa

Poisson’s ratio

(Real)

 

A0

Yield criteria coefficient

(Real)

symbol_Pa2

A1

Yield criteria coefficient

(Real)

symbol_Pa

A2

Yield criteria coefficient

(Real)

 

Amax

Yield criteria limit (von Mises limit)

(Real)

symbol_Pa2

C0

EOS coefficient

(Real)

symbol_Pa

C1

EOS coefficient (Comment 4)

(Real)

 

C2

EOS coefficient

(Real)

 

C3

EOS coefficient

(Real)

 

Minimum pressure ( < 0 )

Default = -1030  (Real)

symbol_Pa

Pext

External pressure (Comment 3)

(Real)

symbol_Pa

B

Unloading bulk modulus (Comment 4)

Default = C1  (Real)

symbol_Pa

symbol_umax

Maximum compression (Comment 5)

(Real)

 

hmtoggle_plus1Example (Concrete)

#RADIOSS STARTER

/UNIT/1

unit for mat

                  g                  cm                 mus

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/LAW10/1/1

Concrete

#              RHO_I

                 2.4

#                  E                  NU

                .576                 .25

#                 A0                  A1                  A2                Amax

            9.72E-10             4.32E-5                 .48                .013

#                 C0                  C1                  C2                  C3

                   0                .256                .256                   1

#              P_min               P_ext

              -1E-20                   0

#                  B              Mu_max

                .115                 .44

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.Pressure in the material is calculated from the following equation. Coefficient C0, C1, C2, and C3 should be provided as an input.

Loading:

Unloading:

If symbol_u < symbol_umax, then unloading bulk modulus B is used for the unloading/reloading path.

For each symbol_u over symbol_umax, the unloading path is the same as the loading path.

 

mat_law10A

2.Drücker-Prager yield criteria is given by:

mat_law10B

A1 = A2 = 0 means that yield criteria is von Mises ().

Polynomial expression should have at least one root and should be increasing.

3.External pressure is needed in case of relative pressure formulation. In this specific case yield criteria and energy integration require total pressure value. RADIOSS outputs a pressure which is relative to Pext. You can conclude the total pressure value from P = Pext + symbol_dp where, symbol_dp is EOS calculation. Total pressure limit is concluded from Plim = Pext + symbol_dplim.

If Pext = 0, then output result is a total pressure: P = symbol_dp and Plim = symbol_dplim.

4.Tensile bulk modulus, C1, must be positive.
5.If B = 0 and symbol_umax = 0, the unloading path and the loading path are the same.

If B = 0 or symbol_umax ≠ 0, the default value for B is .

If or symbol_umax = 0, the default value for symbol_umax is .

loading_unloading

If B is defined, then it must be greater than any slope in [0; symbol_umax].

See Also:

Material Compatibility

Law Compatibility with Failure Model

/MAT/LAW10 in Theory Manual