HyperWorks Solvers

/MAT/LAW21 (DPRAG)

/MAT/LAW21 (DPRAG)

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW21 (DPRAG)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW21 - Rock-Concrete Material

Description

This law, based on Drücker-Prager yield criteria, is used to model materials with internal friction such as rock-concrete. The plastic behavior of these materials is dependent on the pressure in the material. This law is similar to LAW10 (/MAT/DPRAG1); the only difference being that in this law, the pressure is input as a user-defined function of volumetric strain. This law is compatible only with solid elements.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW21/mat_ID/unit_ID or /MAT/DPRAG/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

A0

A1

A2

Amax

 

 

fct_IDf

 

Kt

FscaleP

 

 

 

 

Pext

 

 

 

 

 

 

B

symbol_umax

 

 

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

symbol_kg

E

Young’s modulus

(Real)

symbol_Pa

Poisson’s ratio

(Real)

 

A0

Material plasticity coefficient

(Real)

symbol_Pa2

A1

Material plasticity coefficient

(Real)

symbol_Pa

A2

Material plasticity coefficient

(Real)

 

Amax

Limiting von Mises stress

Default set to 1030  (Real)

symbol_Pa2

fct_IDf

Function identifier describing P(symbol_u)

(Integer)

 

Kt

Tensile bulk modulus (Comment 3)

(Real)

symbol_Pa

FscaleP

Pressure function scale factor

Default = 1.0  (Real)

symbol_Pa

Minimum pressure

Default = -1030  (Real)

symbol_Pa

Pext

External pressure (Comment 4)

Default = 0 (Real)

 

B

Unloading bulk modulus (Comment 3)

(Real)

symbol_Pa

symbol_umax

Maximum volumetric strain in compression (Comment 5)

(Real)

 

hmtoggle_plus1Example (Sand)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                 Mg                  mm                   s

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/DPRAG/1/1

Sand

#              RHO-I

              1.6E-9

#                  E                  NU

                 100                  .3

#                 A0                  A1                  A2                Amax

                1E-7                .001                   1                   0

#  fct_IDf                            Kt            Fscale_p

         2                             1                   0

#              P_min

             -1.5E-4

#                  B              Mu_max

                  80                  .4

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  3. FUNCTIONS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/2

Sand

#                  X                   Y

                  -1                   0

                   0                   0

                  .1                1000

                  .2                2500

                  .3                5000

                  .4               10000

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.Hydrodynamic behavior is given by a user-defined function P = f(symbol_u).

where, P is the pressure in the material, and symbol_u is the volumetric strain.

mat_law10A

2.Drücker-Prager yield criteria uses a modified von Mises yield criteria to incorporate the effects of pressure for massive structures:

mat_law10B

Where, J2 is the second invariant of deviatoric stress, P is the pressure, A0, A1, and A2 are the material plasticity coefficients, and A1 = A2 = 0 means that yield criteria is von Mises ().

 

3.It is recommended to set Unloading Bulk modulus, B is equal to the initial slope of function describing P(symbol_u) and Tensile Bulk modulus Kt equal to 1/100 of Unloading Bulk modulus B and Kt must be positive.
4.External pressure is needed in case of relative pressure formulation. In this specific case, yield criteria and energy integration require total pressure value. RADIOSS outputs a pressure which is relative to Pext. You can conclude the total pressure value from P = Pext + symbol_dp where, symbol_dp is EOS calculation. Total pressure limit is concluded from Plim = Pext + symbol_dplim.

If Pext = 0, then output result is a total pressure: P = symbol_dp and Plim = symbol_dplim .

5.If B = 0 and symbol_umax = 0, the unloading path and the loading path are the same.

If B = 0 or symbol_umax ≠ 0, the default value for B is .

If B ≠ 0 or symbol_umax = 0, the default value for symbol_umax is .

loading_unloading

If B is defined, then it must be greater than any slope in [0; symbol_umax].

See Also:

Material Compatibility

Law Compatibility with Failure Model

/MAT/LAW21 in Theory Manual