Block Format Keyword
/MAT/LAW21 - Rock-Concrete Material
Description
This law, based on Drücker-Prager yield criteria, is used to model materials with internal friction such as rock-concrete. The plastic behavior of these materials is dependent on the pressure in the material. This law is similar to LAW10 (/MAT/DPRAG1); the only difference being that in this law, the pressure is input as a user-defined function of volumetric strain. This law is compatible only with solid elements.
Format
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
(7)
|
(8)
|
(9)
|
(10)
|
/MAT/LAW21/mat_ID/unit_ID or /MAT/DPRAG/mat_ID/unit_ID
|
mat_title
|
|
|
|
|
|
|
|
|
|
E
|
|
|
|
|
|
|
|
A0
|
A1
|
A2
|
Amax
|
|
|
fct_IDf
|
|
Kt
|
FscaleP
|
|
|
|
|
|
Pext
|
|
|
|
|
|
|
B
|
|
|
|
|
|
|
|
Field
|
Contents
|
SI Unit Example
|
mat_ID
|
Material identifier
(Integer, maximum 10 digits)
|
|
unit_ID
|
Optional unit identifier
(Integer, maximum 10 digits)
|
|
mat_title
|
Material title
(Character, maximum 100 characters)
|
|
|
Initial density
(Real)
|
|
E
|
Young’s modulus
(Real)
|
|
|
Poisson’s ratio
(Real)
|
|
A0
|
Material plasticity coefficient
(Real)
|
|
A1
|
Material plasticity coefficient
(Real)
|
|
A2
|
Material plasticity coefficient
(Real)
|
|
Amax
|
Limiting von Mises stress
Default set to 1030 (Real)
|
|
fct_IDf
|
Function identifier describing P()
(Integer)
|
|
Kt
|
Tensile bulk modulus (Comment 3)
(Real)
|
|
FscaleP
|
Pressure function scale factor
Default = 1.0 (Real)
|
|
|
Minimum pressure
Default = -1030 (Real)
|
|
Pext
|
External pressure (Comment 4)
Default = 0 (Real)
|
|
B
|
Unloading bulk modulus (Comment 3)
(Real)
|
|
|
Maximum volumetric strain in compression (Comment 5)
(Real)
|
|
|
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
Mg mm s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/DPRAG/1/1
Sand
# RHO-I
1.6E-9
# E NU
100 .3
# A0 A1 A2 Amax
1E-7 .001 1 0
# fct_IDf Kt Fscale_p
2 1 0
# P_min
-1.5E-4
# B Mu_max
80 .4
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 3. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
Sand
# X Y
-1 0
0 0
.1 1000
.2 2500
.3 5000
.4 10000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
|
1. | Hydrodynamic behavior is given by a user-defined function P = f(). |
where, P is the pressure in the material, and is the volumetric strain.
2. | Drücker-Prager yield criteria uses a modified von Mises yield criteria to incorporate the effects of pressure for massive structures: |
Where, J2 is the second invariant of deviatoric stress, P is the pressure, A0, A1, and A2 are the material plasticity coefficients, and A1 = A2 = 0 means that yield criteria is von Mises ().
3. | It is recommended to set Unloading Bulk modulus, B is equal to the initial slope of function describing P() and Tensile Bulk modulus Kt equal to 1/100 of Unloading Bulk modulus B and Kt must be positive. |
4. | External pressure is needed in case of relative pressure formulation. In this specific case, yield criteria and energy integration require total pressure value. RADIOSS outputs a pressure which is relative to Pext. You can conclude the total pressure value from P = Pext + where, is EOS calculation. Total pressure limit is concluded from Plim = Pext + lim. |
If Pext = 0, then output result is a total pressure: P = and Plim = lim .
5. | If B = 0 and = 0, the unloading path and the loading path are the same. |
If B = 0 or ≠ 0, the default value for B is .
If B ≠ 0 or = 0, the default value for is .
If B is defined, then it must be greater than any slope in [0; ].
|
See Also:
Material Compatibility
Law Compatibility with Failure Model
/MAT/LAW21 in Theory Manual