HyperWorks Solvers

17.1 - Densities

17.1 - Densities

Previous topic Next topic No expanding text in this topic  

17.1 - Densities

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

 

Title

Box Beam - Densities

ex_17_boxbeam_table

Number

17.1

Brief Description

A steel box beam, fixed at one end and impacted at the other end by an infinite mass.

Results for mesh with different densities are compared.

Keywords

Shells Q4
Type 7 and 11 interface
Global plasticity, iterative plasticity, and variable thickness
BT_TYPE1, 3, 4, QEPH, BATOZ, DKT18 and C0 formulation

RADIOSS Options

Boundary conditions (/BCS)
Rigid wall (/RWALL)
Imposed velocity (/IMPVEL)
Rigid body (/RBODY)

Input File

Mesh 0: <install_directory>/demos/hwsolvers/radioss/17_BoxBeam/Densities_mesh/mesh0/.../BOXBEAM*

Mesh 1: <install_directory>/demos/hwsolvers/radioss/17_BoxBeam/Densities_mesh/mesh1/.../BOXBEAM*

Mesh 2: <install_directory>/demos/hwsolvers/radioss/17_BoxBeam/Densities_mesh/mesh2/.../BOXBEAM*

Mesh 3: <install_directory>/demos/hwsolvers/radioss/17_BoxBeam/Densities_mesh/mesh3/.../BOXBEAM*

Technical / Theoretical Level

Advanced

Overview


Physical Problem Description

A steel box beam fixed at one end, is impacted at the other end by an infinite mass. The dimensions of the box beam are 203 mm x 50.8 mm x 38.1 mm, and its thickness is 0.914 mm. As symmetry is taken into account, only one quarter of the structure is modeled.

Units:  mm, ms, g, N, MPa

The material used follows an isotropic elasto-plastic material (/MAT/LAW2) using the Johnson-Cook plasticity model, with the following characteristics:

Initial density: 7.8 x 10-3 g/mm3
Young modulus:  210000 MPa
Poisson ratio:  0.3
Yield stress: 206 MPa
Hardening parameter: 450 MPa
Hardening exponent: 0.5
Maximum stress: 340 MPa

fig_17-1

Fig 1: Problem studied.

Analysis, Assumptions and Modeling Description


Modeling Methodology

Four kinds of meshes are used to model the beam. The initial mesh is uniform using a total of 60 x 8 elements. For the three other meshes, the element length is multiplied by 2, 3 and 4, as shown in the following diagram.

For each model, several element formulations are tested:

BT_TYPE1
BT_TYPE3
BT_TYPE4
QEPH
BATOZ
C0 (T3 element)
DKT18 (T3 element)

fig_17-2

Fig 2: Meshes.

The 3-node shell mesh is obtained by dividing the 4-node shell elements.

RADIOSS Options Used

Boundary conditions:

Take into account the symmetry, all nodes in the Y-Z plan are fixed in a Y translation and an X and Z rotation. One quarter of the structure is modeled.

Rigid body:

The lower (fixed) end is modeled using a rigid body connecting all lower nodes (Z = 0.0). The rigid body is completely fixed using translations and rotations.

Wall:

The impactor is modeled using a sliding rigid wall having a fixed velocity (13.3 m/s) in a Z direction and is fixed for other translations and rotations.

Interfaces:

The structure’s self-impact is modeled using a type 7 interface on the full structure. The interface master surface is defined using the complete model. The slave nodes group is defined using the master surface.

On top of the beam, possible edge-to-edge impacts are dealt with using a type 11 self-impacting interface. The edges use the master surface of the type 7 interface as the input surface.

fig_17-3

Fig 3: Boundary conditions.

Simulation Results and Conclusions


The results are compared using two different views:

The role and influence of the mesh for a given type of element formulation
The shell element formulations for a given mesh

Three criteria are used to compare the quality of results obtained:

Crushing force versus displacement

The crushing force corresponds to normal force in the Z-direction of the impactor (rigid wall), multiplied by 4 due to the symmetry.

In comparison, the displacement corresponds to the Z-direction motion of the rigid wall’s master node.

Hourglass energy
Total energy

Total energy is the sum of all energies.

Mesh Influence of a Given Shell

fig_17-4

Fig 4: Total energy for a BATOZ formulation.

fig_17-5

Fig 5: Force for a BATOZ formulation.

fig_17-6

Fig 6: Total energy for a QEPH formulation.

fig_17-7

Fig 7: Force for a QEPH formulation.

fig_17-8

Fig 8: Total energy for a BT_TYPE1 formulation.

fig_17-9

Fig 9: Hourglass energy for a BT_TYPE1 formulation.

fig_17-10

Fig 10: Force for a BT_TYPE1 formulation.

fig_17-11

Fig 11: Total energy for a BT_TYPE3 formulation.

fig_17-12

Fig 12: Hourglass energy for a BT_TYPE3 formulation.

fig_17-13

Fig 13: Force for a BT_TYPE3 formulation.

fig_17-14

Fig 14: Total energy for a BT_TYPE4 formulation.

fig_17-15

Fig 15: Hourglass energy for a BT_TYPE4 formulation.

fig_17-16

Fig 16: Force for a BT_TYPE4 formulation.

fig_17-17

Fig 17: Total energy for a CO formulation.

fig_17-18

Fig 18: Force for a CO formulation.

fig_17-19

Fig 19: Total energy for a DKT formulation.

fig_17-20

Fig 20: Force for a DKT formulation.

Influence of Element Formulation using Mesh 3

fig_17-21

Fig 21: Total energy for different element formulations.

fig_17-22

Fig 22: Total energy for different element formulations.

fig_17-23

Fig 23: Hourglass energy for different element formulations.

fig_17-24

Fig 24: Displacement for different element formulations.

fig_17-25

Fig 25: Displacement for different element formulations

MESH 0

ex_17_mesh_0

MESH 1

ex_17_mesh_1

MESH 2

ex_17_mesh_2

MESH 3

ex_17_mesh_3

 

 

MESH 0

MESH 1

MESH 2

MESH 3

EI

t = 8 ms

3.25 x 105

3.82 x 105

4.88 x 105

7.23 x 105

Ehr

t = 8 ms

-

-

-

-

EK

t = 8 ms

1.32 x 104

1.23 x 104

1.26 x 104

1.10 x 104

Total Energy

3.38 x 105

3.94 x 105

5.00 x 105

7.34 x 105

Error

t = 8 ms

0.3%

1.1%

1.6%

2.9%

Maximum normal force on the wall (N)

10350

10491

10953

11555

Formulation: QEPH

 

 

MESH 0

MESH 1

MESH 2

MESH 3

EI

t = 8 ms

3.38 x 105

4.55 x 105

5.49 x 105

8.13 x 105

Ehr

t = 8 ms

-

-

-

-

EK

t = 8 ms

1.32 x 104

1.36 x 104

1.35 x 104

0.93 x 104

Total Energy

3.51 x 105

4.68 x 105

5.63 x 105

8.23 x 105

Error

t = 8 ms

2.0%

2.9%

3.2%

8.0%

Maximum normal force on the wall (N)

10345

10574

11335

11865

Formulation:  BT_TYPE1

 

 

MESH 0

MESH 1

MESH 2

MESH 3

EI

t = 8 ms

3.19 x 105

3.60 x 105

4.68 x 105

5.19 x 105

Ehr

t = 8 ms

2.42 x 104

4.17 x 104

3.87 x 104

8.80 x 104

EK

t = 8 ms

1.29 x 104

1.23 x 104

1.16 x 104

1.35 x 104

Total Energy

3.32 x 105

3.72 x 105

4.79 x 105

5.32 x 105

Error

t = 8 ms

-6.4%

-9.3%

-5.8%

-11.5%

Maximum normal force on the wall (N)

10344

10505

10971

11569

Formulation:  BT_TYPE3

 

 

MESH 0

MESH 1

MESH 2

MESH 3

EI

t = 8 ms

3.14 x 105

3.73 x 105

4.46 x 105

4.94 x 105

Ehr

t = 8 ms

2.02 x 104

3.80 x 104

6.56 x 104

11.90 x 104

EK

t = 8 ms

1.31 x 104

1.24 x 104

1.32 x 104

1.29 x 104

Total Energy

3.27 x 105

3.85 x 105

4.60 x 105

5.07 x 105

Error

t = 8 ms

-5.5%

-8.2%

-11.0%

-16.7%

Maximum normal force on the wall (N)

10353

10526

11000

11670

Formulation:  BT_TYPE4

 

 

MESH 0

MESH 1

MESH 2

MESH 3

EI

t = 8 ms

3.23 x 105

3.52 x 105

4.60 x 105

5.26 x 105

Ehr

t = 8 ms

1.26 x 104

1.94 x 104

3.74 x 104

5.02 x 104

EK

t = 8 ms

1.30 x 104

1.24 x 104

1.21 x 104

1.31 x 104

Total Energy

3.36 x 105

3.64 x 105

4.72 x 105

5.39 x 105

Error

t = 8 ms

-3.3%

-4.0%

-5.8%

-6.5%

Maximum normal force on the wall (N)

10344

10538

11011

11568

Formulation:  C0

 

 

MESH 0

MESH 1

MESH 2

MESH 3

EI

t = 8 ms

3.45 x 105

4.56 x 105

4.79 x 105

8.64 x 105

Ehr

t = 8 ms

-

-

-

-

EK

t = 8 ms

1.29 x 104

1.30 x 104

1.10 x 104

1.12 x 104

Total Energy

3.58 x 105

4.69 x 105

4.90 x 105

8.75 x 105

Error

t = 8 ms

0.2%

0.8%

1.7%

2.5%

Maximum normal force on the wall (N)

10355

10344

10875

11435

Formulation:   DKT18

 


MESH 0

MESH 1

MESH 2

MESH 3

EI

t = 8 ms

3.21 x 105

3.75 x 105

3.97 x 105

4.32 x 105

Ehr

t = 8 ms

-

-

-

-

EK

t = 8 ms

1.29 x 104

1.34 x 104

1.13 x 104

1.45 x 104

Total Energy

3.34 x 105

3.88 x 105

4.08 x 105

4.47 x 105

Error

t = 8 ms

0.5%

0.8%

1.6%

1.9%

Maximum normal force on the wall (N)

10348

10367

10800

11139

 

ex_17_mesh_table2-1

 

ex_17_mesh_table2-2