HyperWorks Solvers

/MAT/LAW2 (PLAS_JOHNS)

/MAT/LAW2 (PLAS_JOHNS)

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW2 (PLAS_JOHNS)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW2 - Johnson-Cook Material

Description

This law represents an isotropic elasto-plastic material using the Johnson-Cook material model. This model expresses material stress as a function of strain, strain rate and temperature. A built-in failure criterion based on the maximum plastic strain is available.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW2/mat_ID/unit_ID or /MAT/PLAS_JOHNS/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

Iflag

 

 

 

 

 

a
(or )

b
(or UTS)

n
(or )

c

ICC

Fsmooth

Fcut

Chard

m

Tmelt

Tr

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

E

Young’s modulus

(Real)

Poisson’s ratio

(Real)

Iflag

Input type flag

(Integer)

= 0: Classic input for Johnson-Cook parameter a,b,n is active (default)

= 1: New, simplified input type is active:
Yield stress, UTS (engineering stress), or Strain at UTS (Comment 17)

 

a (or )

If Iflag = 0: Plastic yield stress

If Iflag = 1: Yield stress

(Real)

b (or UTS)

If Iflag = 0: Plastic hardening parameter b

If Iflag = 1: Ultimate Tensile Stress - UTS (engineering stress)

(Real)

 

n (or )

If Iflag = 0: Plastic hardening exponent n (Comment 5)

If Iflag = 1: , Engineering strain at UTS

Default = 1.0  (Real)

 

Failure plastic strain

Default = 1030  (Real)

 

Maximum stress

Default = 1030  (Real)

c

Strain rate coefficient

Default = 0.00  (Real)

= 0: no strain rate effect

 

Reference strain rate

(Real)

If , no strain rate effect

ICC

Strain rate computation flag (Comment 8)

(Integer)

= 0: default set to 1

= 1: strain rate effect on

= 2: no strain rate effect on

 

Fsmooth

Strain rate smoothing flag

(Integer)

= 0: strain rate smoothing is inactive (default)

= 1: strain rate smoothing is active

 

Fcut

Cutoff frequency for strain rate smoothing (Comments 9 and 10)

Default = 1030  (Real)

Chard

Hardening coefficient (unloading)

(Real)

= 0: isotropic model

= 1: kinematic Prager-Ziegler model

= value between 0 and 1: the hardening behavior is interpolated between the two models (Comment 16)

 

m

Temperature exponent

Default = 1.00  (Real)

 

Tmelt

Melting temperature

Default = 1030  (Real)

= 0: no temperature effect

Specific heat per unit volume (Comment 12)

(Real)

Tr

Room temperature (Comment 12)

Default = 298 K  (Real)

hmtoggle_plus1Example (Steel)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                 Mg                  mm                   s

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/PLAS_JOHNS/1/1

Steel

#              RHO_I

              7.8E-9

#                  E                  NU     Iflag

              210000                  .3         0

#                  a                   b                   n             EPS_max            SIG_max0

                 270      793.9521092213     0.7520058067932                   0                   0

#                  c           EPS_DOT_0       ICC   Fsmooth               F_cut               Chard

                   0                   0         0         0                   0                   0

#                  m              T_melt              rhoC_p                 T_r

                   0                   0                   0                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Example (Steel with UTS)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                 Mg                  mm                   s

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/PLAS_JOHNS/1/1

Steel (use ultimate tensile stress(UTS) and engineering strain )

#              RHO_I

              7.8E-9

#                  E                  NU     Iflag

              210000                  .3         1

#              SIG_y                 UTS             EPS_UTS             EPS_max            SIG_max0

                 270                 450                  .6                   0                   0

#                  c           EPS_DOT_0       ICC   Fsmooth               F_cut               Chard

                   0                   0         0         0                   0                   0

#                  m              T_melt              rhoC_p                 T_r

                   0                   0                   0                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.This is an elasto-plastic material model that includes strain rate and temperature effects.
2.In this model the material behaves as a linear-elastic material when the equivalent stress is lower than the plastic yield stress. For higher stress values, the material behavior is plastic and the stress is calculated as shown below.

where,

is the plastic strain, is the strain rate, T is the temperature, Tr is the ambient temperature, and Tmelt is the melting temperature.

3.The plastic yield stress should always be greater than zero. To model pure elastic behavior, the plastic yield stress will be set to 1030.
4.When reaches the value of in one integration point, then based on the element type:
Shell elements:
The corresponding shell element is deleted.
Solid elements:
The deviatoric stress of the corresponding integral point is permanently set to 0, however, the solid element is not deleted.
5.The plastic hardening exponent, n must be less than or equal to 1.
6.The strain rate has no effect on truss elements.
7.To eliminate the effect of the strain rate, you can either set the value of c equal to 0 or the reference strain rate () can be set equal to 1030. There is no effect of strain rate when is less than .
8.The ICC flag defines the effect of strain rate on the maximum material stress . The figure below shows the value of for the corresponding ICC flag.

mat_law27

9.Strain rate smoothing is a process used to filter out higher strain rate frequencies.
10.The strain rate smoothing input (Fcut) is available only for shell and solid elements.
11.There is no effect of temperature on trusses and beams.
12.The temperature is constant (T = Tr), if .
13.Adiabatic conditions are assumed for thermal simulations with initial temperature equal to room temperature (Tr) and:

Where, is the internal deformation energy.

14.The strain rate dependence must be activated to account for thermal effects.
15.When /HEAT/MAT (with Iform =1) references this material model, the values of Tr and defined in this card will be overwritten by the corresponding T0 and defined in /HEAT/MAT.
16.The hardening coefficient is used to describe the hardening model (during unloading). The values of the hardening coefficient should be between 0 and 1.
17.The simplified input of Yield-Stress, Ultimate-Stress (UTS in engineering stress), and strain at UTS (which is between 0.5 – 0.9 of failure strain) will be recalculate to the Johnson-Cook values a,b,n internally. The Starter output file has the values.

See Also:

Material Compatibility

Law Compatibility with Failure Model

Material Test in User's Guide

/MAT/LAW2 and /MAT/LAW36 in User's Guide

/MAT/LAW2 in Theory Manual

Material/Failure in FAQ

Global Integration Approach

Example 3 - S-beam Crash

Example 5 - Beam Frame

Example 6.1 - Fluid Structure Coupling

Example 8 - Hopkinson Bar

Example 11 - Tensile Test

Example 14 - Truck with Flexible Body

Example 17 - Box Beam

Example 20 – Cube

Example 21 - Cam

Example 23 - Brake

Example 24 - Laminating

Example 26 - Ruptured Plate

Example 48 - Solid Spotweld

Example 53 - Thermal Analysis