HyperWorks Solvers

/MAT/LAW14 (COMPSO)

/MAT/LAW14 (COMPSO)

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW14 (COMPSO)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW14 - Composite Solid Material (3D Model)

Description

This law describes an orthotropic solid material using the Tsai-Wu formulation that is mainly designed to model uni-directional composites. This material is assumed to be 3D orthotropic-elastic before the Tsai-Wu criterion is reached. The material becomes nonlinear afterwards. The nonlinearity in direction 3 is the same as that in direction 2 to represent the behavior of a composite matrix material. The Tsai-Wu criterion can be set dependent on the plastic work and strain rate in each of the orthotropic directions and in shear to model material hardening. Stress based orthotropic criterion for brittle damage and failure is available. Material Law 12 is an improved version of this material and should be used instead of Law 14.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW14/mat_ID/unit_ID or /MAT/COMPSO/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E11

E22

E33

 

 

 

 

 

 

 

 

G12

G23

G31

 

 

 

 

 

 

B

n

fmax

 

 

 

 

 

 

 

 

Ef

c

ICC

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

E11

Young’s modulus in direction 1

(Real)

E22

Young’s modulus in direction 2

(Real)

E33

Young’s modulus in direction 3

(Real)

Poisson’s ratio between directions 1 and 2

(Real)

 

Poisson’s ratio between directions 2 and 3

(Real)

 

Poisson’s ratio between directions 3 and 1

(Real)

 

G12

Shear modulus in direction 12

(Real)

G23

Shear modulus in direction 23

(Real)

G31

Shear modulus in direction 31

(Real)

Stress at the beginning of composite tensile/compressive failure in direction 1 (Comment 6)

Default = 1030  (Real)

Stress at the beginning of composite tensile/compressive failure in direction 2 (Comment 6)

Default = (Real)

Stress at the beginning of composite tensile/compressive failure in direction 3 (Comment 6)

Default =  (Real)

Maximum damage factor (Comment 6)

Default = 0.05  (Real)

 

B

Global plastic hardening parameter

(Real)

 

n

Global plastic hardening exponent

Default = 1.0  (Real)

 

fmax

Maximum value of the Tsai-Wu criterion limit

Default = 1010  (Real)

 

Yield stress in tension in direction 1

Default = 0.0  (Real)

Yield stress in tension in direction 2

Default = 0.0  (Real)

Yield stress in compression in direction 1

Default = 0.0  (Real)

Yield stress in compression in direction 2

Default = 0.0  (Real)

Yield stress in tensile shear in direction 12

Default = 0.0  (Real)

Yield stress in compressive shear in direction 12

Default = 0.0  (Real)

Yield stress in tensile shear in direction 23

Default = 0.0  (Real)

Yield stress in compressive shear in direction 23

Default = 0.0  (Real)

Fiber volume fraction

Default = 0.0  (Real)

 

Ef

Fiber Young’s modulus

Default = 0.0  (Real)

c

Global strain rate coefficient

(Real)

= 0: no strain rate effect

 

Reference strain rate

(Real)

ICC

Strain rate effect flag

(Integer)

= 0: default, set to 1

= 1: strain rate effect on fmax

= 2: no strain rate effect on fmax

 

hmtoggle_plus1Example (Metal)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                 kg                  cm                  ms

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/COMPSO/1/1

Metal

#              RHO_I

               .0078

#                E11                 E22                 E33

                  10                 100                   1

#               NU12                NU23                NU31

                   0                   0                   0

#                G12                 G23                 G31

                   0                   0                   0

#           SIGMA_T1            SIGMA_T2            SIGMA_T3               DELTA

                1E31                1E31                1E31                   0

#                  B                   n                fmax

                1E31                1E31                1E31

#          sigma_1yt           sigma_2yt           sigma_1yc           sigma_2yc

                1E31                1E31                1E31                1E31

#         sigma_12yt          sigma_12yc          sigma_23yt          sigma_23yc

                1E31                1E31                1E31                1E31

#              ALPHA                 E_f                   c          EPS_RATE_0       ICC

                   0                   0                   0                   0         0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.This material requires an orthotropic solid property (PROP/SOL_ORTH, /PROP/TSH_ORTH or /PROP/TSH_COMP). It can only be used with solid elements for a 3-dimensional analysis. This law is compatible with 10-node tetrahedron and 4-node tetrahedron elements. The orthotropic material directions are specified in the property entries.
2.For the elastic case, the stresses and strains are connected as:

                 

                 

                 

Where, are the strains, are the stresses, and , and are the distortions in the corresponding material directions. For example, for :

mat_law12_distortion

3.The nonlinear behavior in directions 2 and 3 is assumed to be the same to represent the composite matrix material. It is assumed that yield stresses of the composite matrix material (in directions 2 and 3) are related as follows:

The material is assumed to be elastic until the Tsai-Wu criterion is fulfilled. After exceeding the Tsai-Wu criterion limit , the material becomes non-linear:

Where, F is the variable Tsai-Wu criterion limit defined as a function of plastic work (Wp) and the true strain rate ( ):

and, B is the plastic hardening parameter, n is the plastic hardening exponent, is the reference true strain rate, and c is the strain rate coefficient.

The coefficients of the Tsai-Wu criterion are determined from the limiting stresses when the material becomes nonlinear in directions 1, 2, 3 or 12, 23, 31 (shear) in compression or tension as follows:

                     

                                     

                       

           

4.The maximum value of the Tsai-Wu criterion limit is bounded by:

5.ICC is a flag that defines the effect of strain rate on fmax.

If ICC = 1, then fmax is scaled by a factor of .

6.When the limiting stress value of is reached in tension, the corresponding stress value is scaled as . The value of is updated on each time step . After reaches the value of 1, the stress in corresponding direction is set to 0. The damage is irreversible, that is, if a value of is attained the material will not reach any lower damage value.
7.These parameters allow you to define additional fiber reinforcement in the 11 direction. Additional stress in direction 11 will be added equal to .

See Also:

Material Compatibility

Law Compatibility with Failure Model

Tsai-Wu criterion in Theory Manual

Orthotropic Composite Solid Model in Theory Manual