Block Format Keyword
/MAT/LAW12 - Orthotropic Composite Solid Material
Description
This law describes a solid material using the Tsai-Wu formulation that is usually used to model composites. This material is assumed to be 3D orthotropic-elastic before the Tsai-Wu criterion is reached. The material becomes nonlinear afterwards. The Tsai-Wu criterion can be set dependent on the plastic work and strain rate in each of the orthotropic directions and in shear to model material hardening. Stress based orthotropic criterion for brittle damage and failure is available. This material is a generalization and improvement of /MAT/LAW14.
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
/MAT/LAW12/mat_ID/unit_ID or /MAT/3D_COMP/mat_ID/unit_ID |
|||||||||
mat_title |
|||||||||
|
|
|
|
|
|
|
|
|
|
E11 |
E22 |
E33 |
|
|
|
|
|||
|
|
|
|
||||||
G12 |
G23 |
G31 |
|
|
|
|
|||
|
|
||||||||
B |
n |
fmax |
|
|
|
|
|||
|
|
|
|||||||
|
|
||||||||
|
|
||||||||
Ef |
c |
|
ICC |
|
|
#RADIOSS STARTER #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /UNIT/1 unit for mat Mg mm s #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #- 2. MATERIALS: #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| /MAT/LAW12/1/1 carbon # RHO_I 1.5E-9 # E11 E22 E33 64000 60000 5000 # NU12 NU23 NU31 .07 .07 .07 # G12 G23 G31 4000 2000 2000 # sigma_t1 sigma_t2 sigma_t3 delta 0 0 0 0 # B n fmax 50 .5 0 # sigma_1yt sigma_2yt sigma_1yc sigma_2yc 600 500 600 600 # sigma_12yt sigma_12yc sigma_23yt sigma_23yc 100 100 30 30 # sigma_3yt sigma_3yc sigma_13yt sigma_13yc 50 50 100 100 # alpha Ef c EPS_RATE_0 ICC 0 0 0 0 0 #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| #ENDDATA /END #---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----| |
Where, are the strains, are the stresses, and , and are the distortions in the corresponding material directions. For example, for :
Where, F is the variable Tsai-Wu criterion limit defined as a function of plastic work (Wp ) and the true strain rate ():
and, B is the plastic hardening parameter, n is the plastic hardening exponent, is the reference true strain rate, and c is the strain rate coefficient. The coefficients of the Tsai-Wu criterion are determined from the limiting stresses when the material becomes nonlinear in directions 1, 2, 3 or 12, 23, 31 (shear) in compression or tension as follows:
If ICC = 1, then fmax is scaled by a factor of:
|
See Also:
Law Compatibility with Failure Model