HyperWorks Solvers

MATX62

MATX62

Previous topic Next topic Expand/collapse all hidden text  

MATX62

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Bulk Data Entry

MATX62 – Material Property Extension for Hyper-visco-elastic Material for Geometric Nonlinear Analysis

Description

Defines additional material properties for Hyper-visco-elastic material for geometric nonlinear analysis. This material is used to model rubber, polymers, and elastomers. This material is compatible with solid and shell elements.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

MATX62

MID

MUMAX

 

 

 

 

 

 

 

 

LAW

MU1

ALFA1

MU2

ALFA2

MU3

ALFA3

 

 

 

 

MU4

ALFA4

MU5

ALFA5

...

 

 

 

Optional continuation lines for Maxwell value:

 

MAXWELL

GAM1

T1

GAM2

T2

GAM3

T3

 

 

 

 

GAM4

T4

GAM5

T5

...

 

 

 

hmtoggle_plus1Example

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

MAT1

102

10.0

 

0.495

6.0E-10

 

 

 

 

MATX62

102

 

 

 

 

 

 

 

 

 

LAW

0.10

2.0

-0.010

-2.0

 

 

 

 

Field

Contents

MID

Material ID of the associated MAT1 (See comment 1).

No default (Integer > 0)

MUMAX

Maximum viscosity.

Default = 1030 (Real)

LAW

Indicates that material parameters MUi and ALFAi follow.

MUi

Parameter μi

(Real)

ALFAi

Parameter αi

(Real)

MAXWELL

Indicates that MAXWELL model parameter pairs GAMi and Ti follow.

GAMi

Stiffness ratio γi.

(Real)

Ti

Time relaxation τi.

(Real)

Comments

1.The material identification number must be that of an existing MAT1 bulk data entry. Only one MATXi material extension can be associated with a particular MAT1.
2.MATX62 is only applied in geometric nonlinear analysis subcases which are defined by ANALYSIS = EXPDYN. It is ignored for all other subcases.
3.NU is defined on the corresponding MAT1.
4.If no pair GAM1, T1 is given the law is hyper-elastic.
5.The strain energy density W is computed using the following equation:

matx62_1

with λi being the ith principal stretch, J = λ1 * λ2 * λ3 being the relative volume and matx62_2.  O < NU < 0.5

The ground shear modulus is:

matx62_3

6.This card is represented as a material in HyperMesh.

See Also:

Bulk Data Section

Guidelines for Bulk Data Entries

Bulk Data Entries by Function

The Input File