HyperWorks Solvers

TEMPP1

TEMPP1

Previous topic Next topic Expand/collapse all hidden text  

TEMPP1

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Bulk Data Entry

TEMPP1 – Temperature Field for Shell Elements

Description

Defines temperature field for shell elements (as a combination of reference plane temperature and linear thermal gradient through thickness) for determination of thermal loading, temperature-dependent material properties and stress recovery.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

TEMPP1

SID

EID1

TBAR

TPRIME

T1

T2

 

 

 

 

EID2

EID3

EID4

EID5

EID6

EID7

EID8

...

 

Alternate Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

TEMPP1

SID

EID1

TBAR

TPRIME

T1

T2

 

 

 

 

EID2

THRU

EIDi

EIDj

THRU

EIDk

 

 

 

hmtoggle_plus1Example

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

TEMPP1

10

5

100.0

5.0

75.0

125.0

 

 

 

 

17

20

21

30

 

 

 

 

 

TEMPP1

10

5

100.0

5.0

75.0

125.0

 

 

 

 

6

THRU

21

25

THRU

54

 

 

 

Field

Contents

SID

LOAD set identification.

(Integer > 0)

EID#

Element identification number of the element for which the TEMPP1 temperature is applied.

No default (Integer > 0)

TBAR

Temperature at the shell reference plane.

Default = see comment 10 (Real)

TPRIME

Effective linear thermal gradient.

Default = 0.0 (Real)

T1

Temperature at lower surface of the shell elements.

Default = blank (Real)

T2

Temperature at upper surface of the shell elements.

Default = blank (Real)

Comments

1.Temperature sets may be selected for use in a subcase by the TEMPERATURE(LOAD), TEMPERATURE(MATERIAL), or TEMPERATURE(BOTH) subcase information entries.
2.Multiple TEMPP1 entries should not reference the same element ID (EID#). By extension, element ID’s (EID#) should not be duplicated on the same TEMPP1 entry.
3.TEMPP1 is only supported in Linear Static Analysis. It is currently not supported for optimization.
4.If continuation entries are present, EID1 and subsequent elements specified on the continuation entry are assigned the temperature defined on this TEMPP1 entry.
5.To apply thermal loading to any model, all elements must have a temperature field defined either directly on via TEMPP1 or indirectly as the average of the connected grid point temperature defined on the TEMP or TEMPD entries. Directly defined element temperatures (via TEMPP1) always take precedence over the average of grid point temperatures for the corresponding elements.
6.The EIDi fields can reference CTRIA3, CQUAD4, CTRIA6, or CQUAD8 shell elements only.
7.Currently, only a constant linear temperature gradient can be applied through the shell element thickness via the TPRIME field. If the temperature field in the physical structure is expected to vary nonlinearly, then one option is to approximate an “effective gradient” for a homogeneous plate as:

Where, I is the bending inertia, z is the distance from the neutral surface in the positive shell normal direction, and t is the shell thickness.

8.Currently, only a single neutral plane temperature can be specified for a shell element via the TBAR field. If the temperature is expected to vary across the volume, then an average temperature for a homogeneous plate can be approximated as:

Where, V represents the volume of the shell element.

9.The temperature value at any layer of the shell element is calculated as:

Where, z is the distance from the neutral surface in the positive shell normal direction. If T1 and T2 are specified instead, then TBAR and TPRIME are calculated as follows:

Where, t is the shell thickness.

10.If the element material is temperature dependent, its properties are evaluated using the average temperature TBAR.
11.For composite plate elements, temperature field given by TEMPP1 is applied to the homogenized composite elements.
12.Loads based on temperature gradient through thickness is supported only if the MID2 field on the PSHELL entry references bending material properties.
13.The temperature applied by TEMPP1 entry is directly used as temperature load for the corresponding element(s) only. Therefore, TEMPP1 loading does not contribute to the temperature load on any of the adjacent elements. For instance, if an adjacent element does not have a TEMPP1 load applied to it, then its loading is solely based on any TEMP load (if any) on its grid points. Otherwise, the TEMPD loading is used for such elements.

See Also:

Bulk Data Section

Guidelines for Bulk Data Entries

Bulk Data Entries by Function

The Input File