HyperWorks Solvers

/MAT/LAW73

/MAT/LAW73

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW73

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW73 - Thermal Hill Orthotropic Material

Description

This law describes the Thermal Hill orthotropic material and is applicable only to shell elements. This law differs from /MAT/LAW43 (HILL_TAB) by the fact that yield stress not only depends on strain rate and plastic strain, but also on temperature (it is defined by a user table).

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW73/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

fct_IDE

 

Einf

CE

Blank

r00

r45

r90

Chard

Iyield0

 

 

 

 

 

Tab_ID

 

 

 

 

 

Ti

Cp

 

 

 

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

E

Initial Young’s modulus

(Real)

Poisson’s ratio

(Real)

 

fct_IDE

Function identifier for the scale factor of Young modulus, when Young modulus is function of the plastic strain.

Default = 0  in this case the evolution of Young depends on Einf and CE.

(Integer)

 

Einf

Saturated Young’s modulus for infinitive plastic strain

(Real)

CE

Parameter for Young’s modulus evolution

(Real)

 

r00

Lankford parameter 0 degree (Comment 3)

Default = 1.0  (Real)

 

r45

Lankford parameter 45 degrees

Default = 1.0  (Real)

 

r90

Lankford parameter 90 degrees

Default = 1.0  (Real)

 

Chard

Hardening coefficient

(Real)

= 0: hardening is full isotropic model

= 1: hardening uses the kinematic Prager-Ziegler model

= between 0 and 1: hardening is interpolated between the two models

 

Iyield0

Yield stress flag

(Integer)

= 0: average yield stress input

= 1: yield stress in orthotropic direction 1

 

Failure plastic strain

Default = 1.0 x 1030  (Real)

 

Tensile failure strain at which stress starts to reduce

Default = 1.0 x 1030  (Real)

 

Maximum tensile failure strain at which the stress in element is set to zero

Default = 2.0 x 1030  (Real)

 

Tab_ID

Table identifier for yield stress definition

(Integer)

 

Yield stress scale factor

Default set to 1.0  (Real)

Strain rate scale factor

Default set to 1.0  (Real)

Ti

Initial temperature

Default set to 293 K  (Real)

Cp

Specific heat per mass unit

(Real)

hmtoggle_plus1Example (Steel)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                  g                  mm                  ms

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/LAW73/1/1

steel

#              RHO_I

              0.0078

#                  E                  NU

            210000.0                 0.3

#  fct_IDE                         E_inf                  CE

         0                             0                   0

#                R00                 R45                 R90              C_hard  I_yield0

                 1.6                 1.6                 1.6                 0.0         0

#           EPSP_MAX              EPS_T1              EPS_T2

                   0                   0                   0

# table_ID                   SIGMA_SCALE         EPSPT_SCALE

        10                             0                   0

#                 TI                  CP

                273.                  4.

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/TABLE/1/10

table

        3

     1011                           0.0                273.

     1013                          0.02                300.

     1013                          0.04                300.

     1012                           0.0                300.

     1012                          0.02                273.

     1012                          0.04                273.

/FUNCT/1011

1st

                0.0               185.0

                0.1               339.0

                1.0               339.0

/FUNCT/1012

2nd

                0.0               190.0

                0.1               344.0

                1.0               344.0

/FUNCT/1013

3rd

                0.0               195.0

                0.1               349.0

                1.0               349.0

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.This material law must be used with property set /PROP/TYPE9 (SH_ORTH) or /PROP/TYPE10 (SH_COMP).
2.The yield stress is defined by a user function and the yield stress is compared to equivalent stress:

3.Angles for Lankford parameters are defined with respect to orthotropic direction 1.

             

               

                           

                     

The Lankford parameters is the ratio of plastic strain in plane and plastic strain in thickness direction .

Where, is the angle to the orthotropic direction 1.

This Lankford parameters could be determined from a simple tensile test at an angle .

A higher value of R means better formability.

4.If (plastic strain) reaches , in one integration point, the corresponding shell element is deleted.
5.If E11 (largest principal strain) , stress is reduced using the following relation:

6.If , the stress is reduced to 0 (but the element is not deleted).
7.This law always uses iterative projection for plasticity (Iplas from the property set is ignored).
8.This law is not available with global formulation for plasticity (N= 0 in the property shell is not available).
9.The table for yield stress definition must be a 3-dimensional table whose parameters respectively represent plastic strain, strain rate, and temperature . Values of the table are yield stress values.
10.If and  and yield is linearly interpolated between the eight values of the table corresponding to , .
11.If falls out of the range of the table, yield stress is obtained by linear extrapolation. Thus it is necessary to input into the table the static curves corresponding to zero strain rate (entry should belong to the table definition).

If the /HEAT/MAT option is not associated to the material identifier, adiabatic conditions are assumed and temperature is computed as:

where,

Eint is the internal energy computed by RADIOSS,

and Volume are the current density, and volume,

Cp is the heat capacity per mass unit.

Otherwise, the finite element formulation for heat transfer must be asked for (Iform = 1 in option /HEAT/MAT); initial temperature and specific heat input in the option /HEAT/MAT will then be used.

12.If the yield stresses have been obtained in the orthotropic direction 1, define Iyield0 = 1; otherwise Iyield0 = 0.

See Also:

Material Compatibility

Law Compatibility with Failure Model

/MAT/LAW2 and /MAT/LAW36 in User's Guide

Hill's Law for Orthotropic Plastic Shells in Theory Manual