HyperWorks Solvers

/MAT/LAW43 (HILL_TAB)

/MAT/LAW43 (HILL_TAB)

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW43 (HILL_TAB)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW43 - Hill Orthotropic Material

Description

This law describes the Hill orthotropic material and is applicable only to shell elements. This law differs from LAW32 (HILL) only in the input of yield stress (here it is defined by a user function).

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW43/mat_ID/unit_ID or /MAT/HILL_TAB/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

fct_IDE


Einf

CE

 

 

 

 

r00

r45

r90

Chard

Iyield0

 

 

 

 

 

fct_IDi

 

Fscalei

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

E

Young’s modulus

(Real)

Poisson’s ratio

(Real)

 

fct_IDE

Function identifier for the scale factor of Young modulus, when Young modulus is function of the plastic strain (Comment 12).

Default = 0: in this case the evolution of Young depends on Einf and CE.

(Integer)

 

Einf

Saturated Young’s modulus for infinitive plastic strain

(Real)

CE

Parameter for Young’s modulus evolution (Comment 12)

(Real)

 

r00

Lankford parameter 0 degree (Comment 3)

Default = 1.0  (Real)

 

r45

Lankford parameter 45 degrees

Default = 1.0  (Real)

 

r90

Lankford parameter 90 degrees

Default = 1.0  (Real)

 

Chard

Hardening coefficient

(Real)

= 0: hardening is full isotropic model

= 1: hardening uses the kinematic Prager-Ziegler model

= between 0 and 1: hardening is interpolated between the two models

 

Iyield0

Yield stress flag

(Integer)

= 0: average yield stress input

= 1: yield stress in orthotropic direction 1

 

Failure plastic strain

Default = 1.0 x 1030  (Real)

 

Tensile failure strain at which stress starts to reduce

Default = 1.0 x 1030  (Real)

 

Maximum tensile failure strain at which the stress in element is set to zero

Default = 2.0 x 1030  (Real)

 

fct_IDi

Plasticity curves ith function identifier

(Integer)

 

Fscalei

Scale factor for ith function

Default set to 1.0  (Real)

 

E2i

Strain rate for ith function

(Real)

hmtoggle_plus1Example (Metal)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                 Mg                  mm                  ms

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/HILL_TAB/1/1

metal

#              RHO_I

                  80

#                  E                  NU

              206000                  .3

#FUNCT_IDE                          EINF                  CE

         0                             0                   0

#                r00                 r45                 r90              C_hard   Iyield0

                1.73                1.34                2.24                   0         0

#           EPSP_max              EPS_t1               EPS_m

                   0                   0                   0

# func_IDi                      Fscale_i           EPS_dot_i

         5                             0                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  3. FUNCTIONS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/FUNCT/5

metal

#                  X                   Y

                  0                 260                                                          

               .002                 270                                                          

               .005                 280                                                          

                .01                 297                                                          

                .02                 322                                                          

                .05                 370                                            

                 .1                 422                                                

                .15                 457                                          

                 .2                 485                                        

                 .3                 528                                                          

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.This material law must be used with property set /PROP/TYPE9 (SH_ORTH) or /PROP/TYPE10 (SH_COMP).
2.The yield stress is defined by a user function and the yield stress is compared to equivalent stress:

3.Angles for Lankford parameters are defined with respect to orthotropic direction 1.

 

The Lankford parameters ra is the ratio of plastic strain in plane and plastic strain in thickness direction .

Where, α is the angle to the orthotropic direction 1.

This Lankford parameters ra could be determined from a simple tensile test at an angle α.

A higher value of R means better formability.

4.If the last point of the first (static) function equals 0 in stress, default value of is set to the corresponding value of symbol_ep_14.
5.Element deletion:
Once (plastic strain) reaches , in one integration point, the element is deleted.
If reaches , the stress is reduced using the following relation:
If (largest principal strain) reaches (), the stress in element is reduced to 0 (but the element is not deleted).
Once (largest principal strain) reaches (maximum tensile failure strain), the element is deleted.
6.The maximum number of curves that can be input is 10.
7.If , the yield is interpolated between and .
8.If , function is used.
9.Above , yield is extrapolated.

mat_law43_yield

10.Radial return is not available (only iterative plasticity).
11.If the yield stresses have been obtained in the orthotropic direction 1, define Iyield0 =1; otherwise Iyield0 =0.
12.The evolution of Young’s modulus:
If fct_IDE > 0, the curve defines a scale factor for Young modulus evolution with equivalent plastic strain , which means the Young Modulus is scaled by the function :

The initial value of the scale factor should be equal to 1 and it decreases.

If fct_IDE = 0, the Young Modulus is calculated as:

Where, E and Einf are respectively the initial and asymptotic value of Young’s modulus, and is the accumulated equivalent plastic strain.

Note: If fct_IDE = 0 and CE = 0, Young modulus E is kept constant.

See Also:

Material Compatibility

Law Compatibility with Failure Model

/MAT/LAW2 and /MAT/LAW36 in User's Guide

Global Integration Approach

Hill's Law for Orthotropic Plastic Shells in Theory Manual