Block Format Keyword
/MAT/LAW43 - Hill Orthotropic Material
Description
This law describes the Hill orthotropic material and is applicable only to shell elements. This law differs from LAW32 (HILL) only in the input of yield stress (here it is defined by a user function).
Format
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
(7)
|
(8)
|
(9)
|
(10)
|
/MAT/LAW43/mat_ID/unit_ID or /MAT/HILL_TAB/mat_ID/unit_ID
|
mat_title
|
|
|
|
|
|
|
|
|
|
E
|
|
|
|
|
|
|
|
fct_IDE
|
|
Einf
|
CE
|
|
|
|
|
r00
|
r45
|
r90
|
Chard
|
Iyield0
|
|
|
|
|
|
|
|
|
fct_IDi
|
|
Fscalei
|
|
|
|
|
|
Field
|
Contents
|
SI Unit Example
|
mat_ID
|
Material identifier
(Integer, maximum 10 digits)
|
|
unit_ID
|
Optional unit identifier
(Integer, maximum 10 digits)
|
|
mat_title
|
Material title
(Character, maximum 100 characters)
|
|
|
Initial density
(Real)
|
|
E
|
Young’s modulus
(Real)
|
|
|
Poisson’s ratio
(Real)
|
|
fct_IDE
|
Function identifier for the scale factor of Young modulus, when Young modulus is function of the plastic strain (Comment 12).
Default = 0: in this case the evolution of Young depends on Einf and CE.
(Integer)
|
|
Einf
|
Saturated Young’s modulus for infinitive plastic strain
(Real)
|
|
CE
|
Parameter for Young’s modulus evolution (Comment 12)
(Real)
|
|
r00
|
Lankford parameter 0 degree (Comment 3)
Default = 1.0 (Real)
|
|
r45
|
Lankford parameter 45 degrees
Default = 1.0 (Real)
|
|
r90
|
Lankford parameter 90 degrees
Default = 1.0 (Real)
|
|
Chard
|
Hardening coefficient
(Real)
= 0: hardening is full isotropic model
= 1: hardening uses the kinematic Prager-Ziegler model
= between 0 and 1: hardening is interpolated between the two models
|
|
Iyield0
|
Yield stress flag
(Integer)
= 0: average yield stress input
= 1: yield stress in orthotropic direction 1
|
|
|
Failure plastic strain
Default = 1.0 x 1030 (Real)
|
|
|
Tensile failure strain at which stress starts to reduce
Default = 1.0 x 1030 (Real)
|
|
|
Maximum tensile failure strain at which the stress in element is set to zero
Default = 2.0 x 1030 (Real)
|
|
fct_IDi
|
Plasticity curves ith function identifier
(Integer)
|
|
Fscalei
|
Scale factor for ith function
Default set to 1.0 (Real)
|
|
i
|
Strain rate for ith function
(Real)
|
|
|
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
Mg mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/HILL_TAB/1/1
metal
# RHO_I
80
# E NU
206000 .3
#FUNCT_IDE EINF CE
0 0 0
# r00 r45 r90 C_hard Iyield0
1.73 1.34 2.24 0 0
# EPSP_max EPS_t1 EPS_m
0 0 0
# func_IDi Fscale_i EPS_dot_i
5 0 0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 3. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/5
metal
# X Y
0 260
.002 270
.005 280
.01 297
.02 322
.05 370
.1 422
.15 457
.2 485
.3 528
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
|
2. | The yield stress is defined by a user function and the yield stress is compared to equivalent stress: |
3. | Angles for Lankford parameters are defined with respect to orthotropic direction 1. |
The Lankford parameters ra is the ratio of plastic strain in plane and plastic strain in thickness direction .
Where, α is the angle to the orthotropic direction 1.
This Lankford parameters ra could be determined from a simple tensile test at an angle α.
A higher value of R means better formability.
4. | If the last point of the first (static) function equals 0 in stress, default value of is set to the corresponding value of . |
• | Once (plastic strain) reaches , in one integration point, the element is deleted. |
• | If reaches , the stress is reduced using the following relation:
|
• | If (largest principal strain) reaches (), the stress in element is reduced to 0 (but the element is not deleted). |
• | Once (largest principal strain) reaches (maximum tensile failure strain), the element is deleted. |
6. | The maximum number of curves that can be input is 10. |
7. | If , the yield is interpolated between and . |
8. | If , function is used. |
9. | Above , yield is extrapolated. |
10. | Radial return is not available (only iterative plasticity). |
11. | If the yield stresses have been obtained in the orthotropic direction 1, define Iyield0 =1; otherwise Iyield0 =0. |
12. | The evolution of Young’s modulus: |
• | If fct_IDE > 0, the curve defines a scale factor for Young modulus evolution with equivalent plastic strain , which means the Young Modulus is scaled by the function : |
The initial value of the scale factor should be equal to 1 and it decreases.
• | If fct_IDE = 0, the Young Modulus is calculated as: |
Where, E and Einf are respectively the initial and asymptotic value of Young’s modulus, and is the accumulated equivalent plastic strain.
Note: If fct_IDE = 0 and CE = 0, Young modulus E is kept constant.
|
See Also:
Material Compatibility
Law Compatibility with Failure Model
/MAT/LAW2 and /MAT/LAW36 in User's Guide
Global Integration Approach
Hill's Law for Orthotropic Plastic Shells in Theory Manual