HyperWorks Solvers

/MAT/LAW1 (ELAST)

/MAT/LAW1 (ELAST)

Previous topic Next topic Expand/collapse all hidden text  

/MAT/LAW1 (ELAST)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/MAT/LAW1 - Elastic Material

Description

This keyword defines an isotropic, linear elastic material using Hooke’s law. This law represents a linear relationship between stress and strain. It is available for truss, beam (type 3 only), shell and solid elements.

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/MAT/LAW1/mat_ID/unit_ID or /MAT/ELAST/mat_ID/unit_ID

mat_title

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

mat_ID

Material identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

mat_title

Material title

(Character, maximum 100 characters)

 

Initial density

(Real)

symbol_kg

E

Young’s modulus

(Real)

Poisson’s ratio

(Real)

 

hmtoggle_plus1Example (Elastic - Steel)

#RADIOSS STARTER

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/UNIT/1

unit for mat

                 Mg                  mm                   s

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#-  2. MATERIALS:

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/ELAST/1/1

Steel

#              RHO_I

             7.85E-9

#                  E                  NU

              210000                  .3

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

/END

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

hmtoggle_plus1Comments
1.This material law is used to model purely elastic materials. The material stiffness is determined by only two values: the Young's modulus (E), and Poisson's ratio (). The shear modulus (G) can be computed using E and , as shown below:

2.The stress-strain relationship can be represented as shown:

3.The value of density is always used in explicit simulations and it may also be used in static implicit simulations to reach a better convergence in quasi-static analysis.
4.Global integration approach is applied to LAW1 and shell elements (/PROP/SHELL), when the number of integration points through the shell thickness is different from NP=1 (membranes).
Note:Failure models are not available in the case of global integration. LAW2 and LAW27 with very high yield stress may be used as a substitution to LAW1 in these cases.

See Also:

Material Compatibility

Law Compatibility with Failure Model

Global Integration Approach

Example 10 – Bending

Example 12 - Jumping Bicycle

Example 14.1 - VPG with a Complete Finite Element Model

Example 18.1 - Square Plate Torsion

Example 20 - Cube

Example 39 - Biomedical Valve

Example 44 - Blow Molding with AMS