HyperWorks Solvers

/PROP/TYPE13 (SPR_BEAM)

/PROP/TYPE13 (SPR_BEAM)

Previous topic Next topic Expand/collapse all hidden text  

/PROP/TYPE13 (SPR_BEAM)

Previous topic Next topic JavaScript is required for expanding text JavaScript is required for the print function  

Block Format Keyword

/PROP/TYPE13 - Beam Type Spring Property Set

Description

This beam type spring property works as a beam element with six independent modes of deformation. This spring accounts for non-linear stiffness, damping and different unloading. Deformation, force and energy-based failure criteria are available.

prop_type13

Format

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

/PROP/TYPE13/prop_ID/unit_ID or /PROP/SPR_BEAM/prop_ID/unit_ID

prop_title

Mass

Inertia

skew_ID

sens_ID

Isflag

Ifail

Ileng

Ifail2

 

Tension/Compression

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

K1

C1

A1

B1

D1

fct_ID11

H1

fct_ID21

fct_ID31

fct_ID41

 

F1

E1

Ascale1

Hscale1

 

 

 

Shear XY

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

K2

C2

A2

B2

D2

fct_ID12

H2

fct_ID22

fct_ID32

fct_ID42

 

F2

E2

Ascale2

Hscale2

 

 

 

Shear XZ

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

K3

C3

A3

B3

D3

fct_ID13

H3

fct_ID23

fct_ID33

fct_ID43

 

F3

E3

Ascale3

Hscale3

 

 

 

Torsion

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

K4

C4

A4

B4

D4

fct_ID14

H4

fct_ID24

fct_ID34

fct_ID44

 

F4

E4

Ascale4

Hscale4

 

 

 

Bending Y

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

K5

C5

A5

B5

D5

fct_ID15

H5

fct_ID25

fct_ID35

fct_ID45

 

F5

E5

Ascale5

Hscale5

 

 

 

Bending Z

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

K6

C6

A6

B6

D6

fct_ID16

H6

fct_ID26

fct_ID36

fct_ID46

 

F6

E6

Ascale6

Hscale6

 

 

 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

 

 

 

 

 

 

c1

n1

 

 

c2

n2

 

 

c3

n3

 

 

c4

n4

 

 

c5

n5

 

 

c6

n6

 

 

hmtoggle_plus1Flag Definition

Field

Contents

SI Unit Example

prop_ID

Property identifier

(Integer, maximum 10 digits)

 

unit_ID

Optional unit identifier

(Integer, maximum 10 digits)

 

prop_title

Property title

(Character, maximum 100 characters)

 

Mass

Spring mass

(Real)

Inertia

Spring inertia

(Real)

skew_ID

Skew system identifier

(Integer)

 

sens_ID

Sensor identifier

(Integer)

 

Isflag

Sensor flag (Comment 10)

(Integer)

=0: spring element activated

=1: spring element deactivated

=2: spring element activated or deactivated

 

Ifail

Failure criteria (Comment 8)

(Integer)

= 0: uni-directional criteria

= 1: multi-directional criteria

 

Ileng

Input per unit length flag

(Integer)

= 0: the force in the spring is computed as previously detailed formula (Comment 2)

= 1: all input are per unit length (Comment 3)

 

Ifail2

Failure model flag

Default = 0  (Integer)

= 0: old displacement criteria

= 1: new displacement criteria

= 2: force criteria

= 3: internal energy criteria

 

K1

Stiffness for tension

(Real)

C1

Damping for tension/compression

(Real)

A1

Coefficient for strain rate effect in tension/compression

Default = 1.0  (Real)

B1

Coefficient for strain rate effect in tension/compression

(Real)

D1

Strain coefficients for elongation velocity for tension/compression

Default = 1.0  (Real)

E1

Coefficient for strain rate effect in tension/compression

(Real)

Ascale1

Abscissa scale factor for in tension/compression (fct_ID11 and fct_ID31)

(Real)

Hscale1

Coefficient for fct_ID41 in tension/compression

Default = 1  (Real)

 

fct_ID11

Function identifier defining in tension/compression

If H1=4: Function identifier defining upper yield curve

(Integer)

= 0: for linear spring

 

H1

Hardening flag

(Integer)

= 0: Nonlinear elastic spring

= 1: Nonlinear elasto-plastic spring

= 2: Nonlinear elasto-plastic spring with decoupled hardening in tension and compression

= 4: Nonlinear elastic plastic spring “kinematic” hardening

= 5: Nonlinear elasto-plastic spring with nonlinear unloading

= 6: Nonlinear elasto-plastic spring with isotropic hardening and nonlinear unloading

= 7: Nonlinear spring with elastic hysteresis

 

fct_ID21

Function identifier defining in tension/compression

(Integer)

 

fct_ID31

Function used only for unloading in tension/compression

If H1=4: Function identifier defining lower yield curve

If H1=5: Function identifier defining residual displacement vs maximum displacement

(Integer)

 

fct_ID41

Function identifier defining in tension/compression

(Integer)

 

Negative failure limit

Default = -1030  (Real)

Positive failure limit

Default = 1030  (Real)

F1

Scale factor for in tension/compression

(Real)

K2

Stiffness for shear XY

(Real)

C2

Damping for shear XY

(Real)

A2

Coefficient for strain rate effect in shear XY

Default = 1.0  (Real)

B2

Logarithmic coefficient for strain rate effect in shear XY

Default = 1.0  (Real)

D2

Scale coefficients for shear velocity

Default = 1.0  (Real)

Ascale2

Abscissa scale factor for in shear XY (fct_ID12 and fct_ID32)

(Real)

Hscale2

Coefficient for fct_ID42 in shear XY

Default = 1  (Real)

 

fct_ID12

Function identifier defining in shear XY

If H2=4: Function identifier defining upper yield curve

(Integer)

= 0: linear spring

 

H2

Hardening flag

(Integer)

= 0: Nonlinear elastic spring

= 1: Nonlinear elasto-plastic spring

= 2: Nonlinear elasto-plastic spring with decoupled hardening in tension and compression

= 4: Nonlinear elastic plastic spring “kinematic” hardening

= 5: Nonlinear elasto-plastic spring with nonlinear unloading

= 6: Nonlinear elasto-plastic spring with isotropic hardening and nonlinear unloading

= 7: Nonlinear spring with elastic hysteresis

 

fct_ID22

Function identifier defining in shear XY

(Integer)

 

fct_ID32

Function used only for unloading in shear XY

If H2 =4: Function identifier defining lower yield curve

If H2 =5: Function identifier defining residual displacement vs maximum displacement

(Integer)

 

fct_ID42

Function identifier defining in shear XY

(Integer)

 

Negative failure limit

Default = -1030  (Real)

Positive failure limit

Default = 1030  (Real)

F2

Scale factor for clip0539 in shear XY

(Real)

E2

Coefficient for strain rate effect in shear XY

(Real)

K3

Stiffness for shear XZ

(Real)

C3

Damping for shear XZ

(Real)

A3

Coefficient for strain rate effect in shear XZ

Default = 1.0  (Real)

B3

Logarithmic coefficient for strain rate effect in shear XZ

Default = 1.0  (Real)

D3

Scale coefficients for shear velocity

Default = 1.0  (Real)

Ascale3

Abscissa scale factor for symbol_s in shear XZ (fct_ID13 and fct_ID33)

(Real)

Hscale3

Coefficient for fct_ID43 in shear XZ

Default = 1  (Real)

 

fct_ID13

Function identifier defining in shear XZ

If H3=4: Function identifier defining upper yield curve

(Integer)

= 0: linear spring

 

H3

Hardening flag

(Integer)

= 0: Nonlinear elastic spring

= 1: Nonlinear elasto-plastic spring

= 2: Nonlinear elasto-plastic spring with decoupled hardening in tension and compression

= 4: Nonlinear elastic plastic spring “kinematic” hardening

= 5: Nonlinear elasto-plastic spring with nonlinear unloading

= 6: Nonlinear elasto-plastic spring with isotropic hardening and nonlinear unloading

= 7: Nonlinear spring with elastic hysteresis

 

fct_ID23

Function identifier defining in shear XZ

(Integer)

 

fct_ID33

Function used only for unloading in shear XZ

If H3=4: Function identifier defining lower yield curve

If H3=5: Function identifier defining residual displacement vs maximum displacement

(Integer)

 

fct_ID43

Function identifier defining in shear XZ

(Integer)

 

Negative failure limit

Default = -1030  (Real)

Positive failure limit

Default = 1030  (Real)

F3

Scale factor for in shear XZ

(Real)

E3

Coefficient for strain rate effect in shear XZ

(Real)

K4

Stiffness for torsion

(Real)

C4

Damping for torsion

(Real)

A4

Coefficient for strain rate effect in torsion (homogeneous to a moment)

Default = 1.0  (Real)

B4

Logarithmic coefficient for strain rate effect in torsion

(Real)

D4

Scale coefficients for torsion velocity

Default = 1.0  (Real)

Ascale4

Abscissa scale factor for in torsion (fct_ID14 and fct_ID34)

(Real)

Hscale4

Coefficient for fct_ID44 in torsion

Default = 1  (Real)

 

fct_ID14

Function identifier defining in torsion

If H4=4: Function identifier defining upper yield curve

(Integer)

= 0: linear spring

 

H4

Hardening flag

(Integer)

= 0: Nonlinear elastic spring

= 1: Nonlinear elasto-plastic spring

= 2: Nonlinear elasto-plastic spring with decoupled hardening in tension and compression

= 4: Nonlinear elastic plastic spring “kinematic” hardening

= 5: Nonlinear elasto-plastic spring with nonlinear unloading

= 6: Nonlinear elasto-plastic spring with isotropic hardening and nonlinear unloading

= 7: Nonlinear spring with elastic hysteresis

 

fct_ID24

Function identifier defining in torsion

(Integer)

 

fct_ID34

Function used only for unloading in torsion

If H4=4: Function identifier defining lower yield curve

If H4=5: Function identifier defining residual displacement vs maximum displacement

(Integer)

 

fct_ID44

Function identifier defining in torsion

(Integer)

 

Negative failure limit

Default = -1030  (Real)

Positive failure limit

Default = 1030  (Real)

F4

Scale factor for in torsion

(Real)

E4

Coefficient for strain rate effect in torsion

(Real)

K5

Stiffness for bending Y

(Real)

C5

Damping for bending Y

(Real)

A5

Coefficient for strain rate effect in bending Y

Default = 1.0  (Real)

B5

Logarithmic coefficient for strain rate effect in bending Y

Default = 1.0  (Real)

D5

Scale coefficients for bending velocity

Default = 1.0  (Real)

Ascale5

Abscissa scale factor for in bending Y (fct_ID15 and fct_ID35)

(Real)

Hscale5

Coefficient for fct_ID45 in bending Y

Default = 1  (Real)

 

fct_ID15

Function identifier defining in bending Y

If H5=4: Function identifier defining upper yield curve

(Integer)

= 0: linear spring

 

H5

Hardening flag

(Integer)

= 0: Nonlinear elastic spring

= 1: Nonlinear elasto-plastic spring

= 2: Nonlinear elasto-plastic spring with decoupled hardening in tension and compression

= 4: Nonlinear elastic plastic spring “kinematic” hardening

= 5: Nonlinear elasto-plastic spring with nonlinear unloading

= 6: Nonlinear elasto-plastic spring with isotropic hardening and nonlinear unloading

= 7: Nonlinear spring with elastic hysteresis

 

fct_ID25

Function identifier defining in bending Y

(Integer)

 

fct_ID35

Function used only for unloading in bending Y

If H5=4: Function identifier defining lower yield curve

If H5=5: Function identifier defining residual displacement vs maximum displacement

(Integer)

 

fct_ID45

Function identifier defining in bending Y

(Integer)

 

Negative failure limit

Default = -1030  (Real)

Positive failure limit

Default = 1030  (Real)

F5

Scale factor for in bending Y

(Real)

E5

Coefficient for strain rate effect in bending Y

(Real)

K6

Stiffness for bending Z

(Real)

C6

Damping for bending Z

(Real)

A6

Coefficient for strain rate effect in bending Z

Default = 1.0  (Real)

B6

Logarithmic coefficient for strain rate effect in bending Z

Default = 1.0  (Real)

D6

Scale coefficients for bending velocity

Default = 1.0  (Real)

Ascale6

Abscissa scale factor for (fct_ID16 and fct_ID36)

(Real)

Hscale6

Coefficient for fct_ID46 in bending Z

Default = 1  (Real)

 

fct_ID16

Function identifier defining in bending Z

If H6=4: Function identifier defining upper yield curve

(Integer)

= 0: linear spring

 

H6

Hardening flag

(Integer)

= 0: Nonlinear elastic spring

= 1: Nonlinear elasto-plastic spring

= 2: Nonlinear elasto-plastic spring with decoupled hardening in tension and compression

= 4: Nonlinear elastic plastic spring “kinematic” hardening

= 5: Nonlinear elasto-plastic spring with nonlinear unloading

= 6: Nonlinear elasto-plastic spring with isotropic hardening and nonlinear unloading

= 7: Nonlinear spring with elastic hysteresis

 

fct_ID26

Function identifier defining in bending Z

(Integer)

 

fct_ID36

Function used only for unloading in bending Z

If H6=4: Function identifier defining lower yield curve

If H6=5: Function identifier defining residual displacement vs maximum displacement

(Integer)

 

fct_ID46

Function identifier defining in bending Z

(Integer)

 

Negative failure limit

Default = -1030  (Real)

Positive failure limit

Default = 1030  (Real)

F6

Scale factor for in bending Z

(Real)

E6

Coefficient for strain rate effect in bending Z

(Real)

Reference translational velocity

Default = 1.0  (Real)

Reference rotational velocity in translation X

Default = 1.0  (Real)

c1

Relative velocity coefficient in translation X

Default = 0.0  (Real)

n1

Relative velocity exponent in translation X

Default = 0.0  (Real)

 

“Mult” factor in translation X

Default = 1.0  (Real)

 

Exponent in translation X

Default = 2.0  (Real)

 

c2

Relative velocity coefficient in shear XY

Default = 0.0  (Real)

n2

Relative velocity exponent in shear XY

Default = 0.0  (Real)

 

“Mult” factor in shear XY

Default = 1.0  (Real)

 

Exponent in shear XY

Default = 2.0  (Real)

 

c3

Relative velocity coefficient in shear XZ

Default = 0.0  (Real)

n3

Relative velocity exponent in shear XZ

Default = 0.0  (Real)

 

symbol_a_143

“Mult” factor in shear XZ

Default = 1.0  (Real)

 

coeffec-B3

Exponent in shear XZ

Default = 2.0  (Real)

 

c4

Relative velocity coefficient in torsion

Default = 0.0  (Real)

n4

Relative velocity exponent in torsion

Default = 0.0  (Real)

 

“Mult” factor in torsion

Default = 1.0  (Real)

 

Exponent in torsion

Default = 2.0  (Real)

 

c5

Relative velocity coefficient in bending Y

Default = 0.0  (Real)

n5

Relative velocity exponent in bending Y

Default = 0.0  (Real)

 

“Mult” factor in bending Y

Default = 1.0  (Real)

 

 

Exponent in bending Y

Default = 2.0  (Real)

 

c6

Relative velocity coefficient in bending Z

Default = 0.0  (Real)

 

n6

Relative velocity exponent in bending Z

Default = 0.0  (Real)

 

 

“Mult” factor in bending Z

Default = 1.0  (Real)

 

 

Exponent in bending Z

Default = 2.0  (Real)

 

hmtoggle_plus1Example (Spring Beam)

In this example beside mass and inertia just simple set stiffness for 6 DOF for this beam type of spring property.

 

/UNIT/2

unit for prop

                 Mg                  mm                   s

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/PROP/TYPE13/1/2

spr_beam example

#               Mass             Inertia   skew_ID   sens_ID    Isflag     Ifail     Ileng    Ifail2

              2.7e-5                2e-4         0         0         0         0         0         0

#                 K1                  C1                  A1                  B1                  D1

                7e+4                   0                   0                   0                   0

# fct_ID11        H1  fct_ID21  fct_ID31  fct_ID41                    delta_min1          delta_max1

         0         0         0         0         0                             0                   0

#                 F1                  E1             Ascale1             Hscale1

                   0                   0                   0                   0

#                 K2                  C2                  A2                  B2                  D2

                7e+4                   0                   0                   0                   0

# fct_ID12        H2  fct_ID22  fct_ID32  fct_ID42                    delta_min2          delta_max2

         0         0         0         0         0                             0                   0

#                 F2                  E2             Ascale2             Hscale2

                   0                   0                   0                   0

#                 K3                  C3                  A3                  B3                  D3

                7e+4                   0                   0                   0                   0

# fct_ID13        H3  fct_ID23  fct_ID33  fct_ID43                    delta_min3          delta_max3

         0         0         0         0         0                             0                   0

#                 F3                  E3             Ascale3             Hscale3

                   0                   0                   0                   0

#                 K4                  C4                  A4                  B4                  D4

                1e+5                   0                   0                   0                   0

# fct_ID14        H4  fct_ID24  fct_ID34  fct_ID44                    delta_min4          delta_max4

         0         0         0         0         0                             0                   0

#                 F4                  E4             Ascale4             Hscale4

                   0                   0                   0                   0

#                 K5                  C5                  A5                  B5                  D5

                1e+5                   0                   0                   0                   0

# fct_ID15        H5  fct_ID25  fct_ID35  fct_ID45                    delta_min5          delta_max5

         0         0         0         0         0                             0                   0

#                 F5                  E5             Ascale5             Hscale5

                   0                   0                   0                   0

#                 K6                  C6                  A6                  B6                  D6

                1e+5                   0                   0                   0                   0

# fct_ID16        H6  fct_ID26  fct_ID36  fct_ID46                    delta_min6          delta_max6

         0         0         0         0         0                             0                   0

#                 F6                  E6             Ascale6             Hscale6

                   0                   0                   0                   0

#                 V0              Omega0

                   0                   0

#                  C                   n               alpha                beta

                   0                   0                   0                   0

                   0                   0                   0                   0

                   0                   0                   0                   0

                   0                   0                   0                   0

                   0                   0                   0                   0

                   0                   0                   0                   0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

#ENDDATA

hmtoggle_plus1Comments
1.The spring’s X direction is defined using nodes N1 and N2 of the spring.

If the third node of the spring N3 is defined, the spring’s Y’ direction is defined using nodes N1 and N3 of the spring. N3, N2, and N1 should not be in a line.

The Z direction is:

If node N3 is not defined in the element input, and skew system is defined in the property input, the Z direction is:

If neither node N3 nor skew system are defined in input, the Z direction is:

prop_spr_beam14

Finally, Y direction is found as:

2.If Ileng =0, translational DOFs i=1,2,3 - use elongation to determine spring forces and use rotational angle in radians for rotational DOFs i=4,5,6 to determine spring moments.

The value of forces and moments in the spring are computed as:

Linear spring:

 with i=1,2,3

 with i=4,5,6

Nonlinear spring:

     with i=1,2,3

   with i=4,5,6

 

Note:

Here (with ) is the difference between the current length l and the initial length l0 of the of the spring element for corresponding translational DOF.
is the relative angle for corresponding rotational DOF in radians.
For linear springs, , and , , and  are null functions and Ai, Bi, Ei, Hscalei are not taken into account.
If stiffness function or is requested, then K is used as a slope for unloading only.
If K is lower than the maximum slope of the function or (K is not consistent with the maximum slope of the curve), K is set to the maximum slope of the curve.
3.If Ileng = 1, translational DOFs i=1,2,3 - use elongation per unit length to determine spring forces and use rotational angle in radians for rotational DOFs i=4,5,6 to determine spring moments. Spring parameters are related to initial spring length.
Spring mass =     Spring stiffness =  
Spring damping =   Spring inertia =

 

Where, l0 is the initial spring length.

The forces and moments in the spring are computed as:

- Linear spring:

 with i=1,23

 with i=4,5,6

- Nonlinear spring:

 with i=1, 2, 3

 with i=4, 5, 6

Where, is the engineering strain and defined as:

- Force functions are given versus engineering strain and engineering strain rate.

- Failure criteria are defined with respect to strain. Input negative/positive failure limit should be related to initial length

4.Unloading behavior of spring is determined by unloading parameter Hi (with i=1, 2, 3, 4, 5, 6) for corresponding DOFs. The figures below show typical unloading behaviors for translational DOF. It is similar behavior for rotational DOF.

linear_spring

Linear spring

nonlinear_spring_0

Nonlinear elastic spring, Hi=0

nonlinear_spring_1

Nonlinear elastic plastic spring, Hi=1

nonlinear_spring_2

Nonlinear elasto-plastic spring with decoupled hardening in tension and compression Hi=2

nonlinear_spring_4

Nonlinear elastic plastic spring “kinematic” hardening Hi=4

nonlinear_spring_5

Nonlinear elasto-plastic spring with nonlinear unloading Hi=5

nonlinear_spring_6

Nonlinear elasto-plastic spring with isotropic hardening and nonlinear unloading Hi=6

nonlinear_spring_7

Nonlinear spring with elastic Hysteresis Hi=7

5.If hardening flag Hi = 4, the loading curve should be positive for all values of abscissa. The unloading curve in this case should be negative for all values of abscissa. For flag Hi = 4, these curves represents upper and lower limits of yield force as function of current spring length variation or strain. The force jumps between the curves each time when the direction of deformation changes.
6.If hardening flag Hi = 5, residual deformation is a function of maximum displacement:

 with i=1, 2, 3

 with i=4, 5, 6

7.Time step calculation
Time step for translational DOF is computed as:

 with i=1, 2, 3, 4

Time step for rotational DOF is computed as:

 with i=4, 5, 6

where, , , with t=1, 2, 3 and i=4, 5, 6

is used as spring time step.

8.Failure criteria:
For uni-directional failure criteria Ifail=0, the spring fails as soon as one of the criteria is met in one direction:

or with and being the failure limits in direction i =1, 2, 3

or  with and being the failure limits in direction i=4, 5, 6

For each direction (or ) should be negative and (or ) should be positive. If the values are zero, then no failure will be taken into account.

For multi-directional failure criteria Ifail=1, the spring fails when the following relation is fulfilled:

For “old” displacement formulation (Ifail2 = 0), the coefficients and are equal to 1.0 and 2.0, respectively.

The new formulation (Ifail2 =1) allows to model velocity dependent failure limit for translational DOF:

Where,  or is the static failure limit in translational directions (Lines 5, 8 and 11), and v0 is the reference velocity.

Force and energy criteria are active with Ifail2 = 2 or 3:

In this case, the displacement values are replaced by positive failure force or failure energy values.

The new formulation (Ifail2 =1) allows to model velocity dependent failure limit for rotational DOF:

Where, or is the static failure limit in rotational direction (Lines 14, 17 and 20), and is the reference velocity.

Moment and energy criteria are activated with Ifail2= 2 or 3:

In this case, the rotation values are replaced by positive failure moment or failure energy values.

9.If Ileng = 1, then displacement failure limits are replaced with failure strain .
10.Spring activated and/or deactivated by sensor:
If sens_ID 0 and Isflag = 0, the spring element is activated by the sens_ID.
If sens_ID ≠ 0 and Isflag = 1, the spring element is deactivated by the sens_ID.
oIf a sensor is used for activating or deactivating a spring, the reference length of the spring at sensor activation (or deactivation) is equal to the nodal distance at time =0.
If sens_ID ≠ 0 and Isflag = 2, then:
oThe spring is activated and/or deactivated by sens_ID
(if sensor is ON, spring is ON; if sensor is OFF, spring is OFF).
oThe spring reference length () is the distance between node N1 and N2 at the time of sensor’s activation.
11.Spring elements with sensor activation or deactivation are mainly used in the pretension models.

See Also:

Material Compatibility

/SPRING

/TH/SPRING

/PROP/SPR_BEAM in User's Guide

Skew and Frame (/SKEW & /FRAME)

Spring definition in Model Preparation in User's Guide

/PROP/SPR_BEAM in Theory Manual

Example 14 - Truck with Flexible Body